Android Malware Detection Based on Hypergraph Neural Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app132312629
Android has been the most widely used operating system for mobile phones over the past few years. Malicious attacks against android are a major privacy and security concern. Malware detection techniques for android applications are therefore significant. A class of methods using Function Call Graphs (FCGs) for android malware detection has shown great potential. The relationships between functions are limited to simple binary relationships (i.e., graphs) in these methods. However, one function often calls several other functions to produce specific effects in android applications, which cannot be captured with FCGs. In this paper, we propose to formalize android malware detection as a hypergraph-level classification task. A hypergraph is a topology capable of portraying complex relationships between multiple vertices, which can better characterize the functional behavior of android applications. We model android applications using hypergraphs and extract the embedded features of android applications using hypergraph neural networks to represent the functional behavior of android applications. Hypergraph neural networks can encode high-order data correlation in a hypergraph structure for data representation learning. In experiments, we validate the gaining effect of hypergraphs on detection performance across two open-source android application datasets. Especially, HGNNP obtains the best classification performance of 91.10% on the Malnet-Tiny dataset and 97.1% on the Drebin dataset, which outperforms all baseline methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app132312629
- https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804
- OA Status
- gold
- Cited By
- 5
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388938950
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388938950Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app132312629Digital Object Identifier
- Title
-
Android Malware Detection Based on Hypergraph Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-23Full publication date if available
- Authors
-
Dehua Zhang, Xiangbo Wu, Erlu He, Xiaobo Guo, Xiaopeng Yang, Ruibo Li, Hao LiList of authors in order
- Landing page
-
https://doi.org/10.3390/app132312629Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804Direct OA link when available
- Concepts
-
Android (operating system), Hypergraph, Computer science, Android malware, Malware, Theoretical computer science, Artificial intelligence, Machine learning, Data mining, Computer security, Operating system, Mathematics, Discrete mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388938950 |
|---|---|
| doi | https://doi.org/10.3390/app132312629 |
| ids.doi | https://doi.org/10.3390/app132312629 |
| ids.openalex | https://openalex.org/W4388938950 |
| fwci | 1.34217497 |
| type | article |
| title | Android Malware Detection Based on Hypergraph Neural Networks |
| biblio.issue | 23 |
| biblio.volume | 13 |
| biblio.last_page | 12629 |
| biblio.first_page | 12629 |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9775999784469604 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C557433098 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7536972761154175 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[0].display_name | Android (operating system) |
| concepts[1].id | https://openalex.org/C2781221856 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7258908152580261 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q840247 |
| concepts[1].display_name | Hypergraph |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7230870723724365 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2989133298 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7154581546783447 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[3].display_name | Android malware |
| concepts[4].id | https://openalex.org/C541664917 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6932069063186646 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[4].display_name | Malware |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3788023889064789 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3662523329257965 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.334337055683136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32835525274276733 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.20125016570091248 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1591077744960785 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11859369277954102 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C118615104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[12].display_name | Discrete mathematics |
| keywords[0].id | https://openalex.org/keywords/android |
| keywords[0].score | 0.7536972761154175 |
| keywords[0].display_name | Android (operating system) |
| keywords[1].id | https://openalex.org/keywords/hypergraph |
| keywords[1].score | 0.7258908152580261 |
| keywords[1].display_name | Hypergraph |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7230870723724365 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/android-malware |
| keywords[3].score | 0.7154581546783447 |
| keywords[3].display_name | Android malware |
| keywords[4].id | https://openalex.org/keywords/malware |
| keywords[4].score | 0.6932069063186646 |
| keywords[4].display_name | Malware |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3788023889064789 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3662523329257965 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.334337055683136 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.32835525274276733 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/computer-security |
| keywords[9].score | 0.20125016570091248 |
| keywords[9].display_name | Computer security |
| keywords[10].id | https://openalex.org/keywords/operating-system |
| keywords[10].score | 0.1591077744960785 |
| keywords[10].display_name | Operating system |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.11859369277954102 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app132312629 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app132312629 |
| locations[1].id | pmh:oai:doaj.org/article:232c17e95cd947b2bf8157a0302c9263 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 23, p 12629 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/232c17e95cd947b2bf8157a0302c9263 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/13/23/12629/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app132312629 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045879529 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8623-8439 |
| authorships[0].author.display_name | Dehua Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210162334 |
| authorships[0].affiliations[0].raw_affiliation_string | Big Data Center of Hebei Province, Shijiazhuang 050066, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210162334 |
| authorships[0].institutions[0].ror | https://ror.org/05a7g7f24 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210162334 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei Provincial Department of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dehua Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Big Data Center of Hebei Province, Shijiazhuang 050066, China |
| authorships[1].author.id | https://openalex.org/A5050068243 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-6174-8008 |
| authorships[1].author.display_name | Xiangbo Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[1].affiliations[0].raw_affiliation_string | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[1].institutions[0].ror | https://ror.org/038dte259 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangbo Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[2].author.id | https://openalex.org/A5081259847 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0658-8119 |
| authorships[2].author.display_name | Erlu He |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[2].affiliations[0].raw_affiliation_string | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[2].institutions[0].ror | https://ror.org/038dte259 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Erlu He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[3].author.id | https://openalex.org/A5100732992 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1137-1224 |
| authorships[3].author.display_name | Xiaobo Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[3].affiliations[0].raw_affiliation_string | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[3].institutions[0].ror | https://ror.org/038dte259 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaobo Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[4].author.id | https://openalex.org/A5101864198 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2750-6944 |
| authorships[4].author.display_name | Xiaopeng Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[4].affiliations[0].raw_affiliation_string | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[4].institutions[0].ror | https://ror.org/038dte259 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaopeng Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[5].author.id | https://openalex.org/A5106630482 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3370-3963 |
| authorships[5].author.display_name | Ruibo Li |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Letters and Science, University of California, Davis, CA 95616, USA |
| authorships[5].institutions[0].id | https://openalex.org/I84218800 |
| authorships[5].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, Davis |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ruibo Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Letters and Science, University of California, Davis, CA 95616, USA |
| authorships[6].author.id | https://openalex.org/A5100324585 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9045-561X |
| authorships[6].author.display_name | Hao Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[6].affiliations[0].raw_affiliation_string | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[6].institutions[0].ror | https://ror.org/038dte259 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hao Li |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Science and Technology on Communication Networks Laboratory, Academy for Network & Communications of CETC, Shijiazhuang 050081, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Android Malware Detection Based on Hypergraph Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2782775281, https://openalex.org/W4312334973, https://openalex.org/W2560361988, https://openalex.org/W2507113366, https://openalex.org/W4327939473, https://openalex.org/W2085301524, https://openalex.org/W2591124010, https://openalex.org/W4311848503, https://openalex.org/W2717179875, https://openalex.org/W4249118297 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app132312629 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app132312629 |
| primary_location.id | doi:10.3390/app132312629 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/23/12629/pdf?version=1700751804 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app132312629 |
| publication_date | 2023-11-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4297099979, https://openalex.org/W2057787526, https://openalex.org/W4367840455, https://openalex.org/W3000239448, https://openalex.org/W2964136807, https://openalex.org/W3097730806, https://openalex.org/W3184617674, https://openalex.org/W3210378911, https://openalex.org/W3131710189, https://openalex.org/W4383559238, https://openalex.org/W3097192014, https://openalex.org/W3147879240, https://openalex.org/W4385872758, https://openalex.org/W3187047132, https://openalex.org/W4226294137, https://openalex.org/W3039088822, https://openalex.org/W2127723417, https://openalex.org/W2099525266, https://openalex.org/W2267725681, https://openalex.org/W3040974506, https://openalex.org/W2508108853, https://openalex.org/W2890756461, https://openalex.org/W4372300804, https://openalex.org/W2892880750, https://openalex.org/W2990138404, https://openalex.org/W2945365184, https://openalex.org/W3190664711, https://openalex.org/W4306317025, https://openalex.org/W1971937094, https://openalex.org/W2056944867, https://openalex.org/W2026417691, https://openalex.org/W2157635833, https://openalex.org/W3025067198, https://openalex.org/W2890110856, https://openalex.org/W2122672392, https://openalex.org/W4282926996 |
| referenced_works_count | 36 |
| abstract_inverted_index.A | 37, 105 |
| abstract_inverted_index.a | 22, 101, 108, 163 |
| abstract_inverted_index.In | 90, 170 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.be | 86 |
| abstract_inverted_index.in | 66, 81, 162 |
| abstract_inverted_index.is | 107 |
| abstract_inverted_index.of | 39, 111, 125, 139, 151, 177, 195 |
| abstract_inverted_index.on | 179, 197, 203 |
| abstract_inverted_index.to | 60, 77, 95, 146 |
| abstract_inverted_index.we | 93, 172 |
| abstract_inverted_index.The | 54 |
| abstract_inverted_index.all | 209 |
| abstract_inverted_index.and | 25, 134, 201 |
| abstract_inverted_index.are | 21, 34, 58 |
| abstract_inverted_index.can | 119, 157 |
| abstract_inverted_index.few | 15 |
| abstract_inverted_index.for | 9, 31, 46, 166 |
| abstract_inverted_index.has | 1, 50 |
| abstract_inverted_index.one | 70 |
| abstract_inverted_index.the | 3, 13, 122, 136, 148, 174, 191, 198, 204 |
| abstract_inverted_index.two | 183 |
| abstract_inverted_index.Call | 43 |
| abstract_inverted_index.been | 2 |
| abstract_inverted_index.best | 192 |
| abstract_inverted_index.data | 160, 167 |
| abstract_inverted_index.most | 4 |
| abstract_inverted_index.over | 12 |
| abstract_inverted_index.past | 14 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.97.1% | 202 |
| abstract_inverted_index.FCGs. | 89 |
| abstract_inverted_index.HGNNP | 189 |
| abstract_inverted_index.calls | 73 |
| abstract_inverted_index.class | 38 |
| abstract_inverted_index.great | 52 |
| abstract_inverted_index.major | 23 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.often | 72 |
| abstract_inverted_index.other | 75 |
| abstract_inverted_index.shown | 51 |
| abstract_inverted_index.task. | 104 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.using | 41, 132, 142 |
| abstract_inverted_index.which | 84, 118, 207 |
| abstract_inverted_index.(FCGs) | 45 |
| abstract_inverted_index.(i.e., | 64 |
| abstract_inverted_index.91.10% | 196 |
| abstract_inverted_index.Drebin | 205 |
| abstract_inverted_index.Graphs | 44 |
| abstract_inverted_index.across | 182 |
| abstract_inverted_index.better | 120 |
| abstract_inverted_index.binary | 62 |
| abstract_inverted_index.cannot | 85 |
| abstract_inverted_index.effect | 176 |
| abstract_inverted_index.encode | 158 |
| abstract_inverted_index.mobile | 10 |
| abstract_inverted_index.neural | 144, 155 |
| abstract_inverted_index.paper, | 92 |
| abstract_inverted_index.phones | 11 |
| abstract_inverted_index.simple | 61 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.years. | 16 |
| abstract_inverted_index.Android | 0 |
| abstract_inverted_index.Malware | 28 |
| abstract_inverted_index.against | 19 |
| abstract_inverted_index.android | 20, 32, 47, 82, 97, 126, 130, 140, 152, 185 |
| abstract_inverted_index.attacks | 18 |
| abstract_inverted_index.between | 56, 115 |
| abstract_inverted_index.capable | 110 |
| abstract_inverted_index.complex | 113 |
| abstract_inverted_index.dataset | 200 |
| abstract_inverted_index.effects | 80 |
| abstract_inverted_index.extract | 135 |
| abstract_inverted_index.gaining | 175 |
| abstract_inverted_index.graphs) | 65 |
| abstract_inverted_index.limited | 59 |
| abstract_inverted_index.malware | 48, 98 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.obtains | 190 |
| abstract_inverted_index.privacy | 24 |
| abstract_inverted_index.produce | 78 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.several | 74 |
| abstract_inverted_index.Function | 42 |
| abstract_inverted_index.However, | 69 |
| abstract_inverted_index.baseline | 210 |
| abstract_inverted_index.behavior | 124, 150 |
| abstract_inverted_index.captured | 87 |
| abstract_inverted_index.concern. | 27 |
| abstract_inverted_index.dataset, | 206 |
| abstract_inverted_index.embedded | 137 |
| abstract_inverted_index.features | 138 |
| abstract_inverted_index.function | 71 |
| abstract_inverted_index.methods. | 68, 211 |
| abstract_inverted_index.multiple | 116 |
| abstract_inverted_index.networks | 145, 156 |
| abstract_inverted_index.security | 26 |
| abstract_inverted_index.specific | 79 |
| abstract_inverted_index.topology | 109 |
| abstract_inverted_index.validate | 173 |
| abstract_inverted_index.Malicious | 17 |
| abstract_inverted_index.datasets. | 187 |
| abstract_inverted_index.detection | 29, 49, 99, 180 |
| abstract_inverted_index.formalize | 96 |
| abstract_inverted_index.functions | 57, 76 |
| abstract_inverted_index.learning. | 169 |
| abstract_inverted_index.operating | 7 |
| abstract_inverted_index.represent | 147 |
| abstract_inverted_index.structure | 165 |
| abstract_inverted_index.therefore | 35 |
| abstract_inverted_index.vertices, | 117 |
| abstract_inverted_index.Hypergraph | 154 |
| abstract_inverted_index.functional | 123, 149 |
| abstract_inverted_index.high-order | 159 |
| abstract_inverted_index.hypergraph | 106, 143, 164 |
| abstract_inverted_index.portraying | 112 |
| abstract_inverted_index.potential. | 53 |
| abstract_inverted_index.techniques | 30 |
| abstract_inverted_index.Especially, | 188 |
| abstract_inverted_index.Malnet-Tiny | 199 |
| abstract_inverted_index.application | 186 |
| abstract_inverted_index.correlation | 161 |
| abstract_inverted_index.hypergraphs | 133, 178 |
| abstract_inverted_index.open-source | 184 |
| abstract_inverted_index.outperforms | 208 |
| abstract_inverted_index.performance | 181, 194 |
| abstract_inverted_index.applications | 33, 131, 141 |
| abstract_inverted_index.characterize | 121 |
| abstract_inverted_index.experiments, | 171 |
| abstract_inverted_index.significant. | 36 |
| abstract_inverted_index.applications, | 83 |
| abstract_inverted_index.applications. | 127, 153 |
| abstract_inverted_index.relationships | 55, 63, 114 |
| abstract_inverted_index.classification | 103, 193 |
| abstract_inverted_index.representation | 168 |
| abstract_inverted_index.hypergraph-level | 102 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100324585 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210130112 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.80334265 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |