Android traffic malware analysis and detection using ensemble classifier Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.asej.2024.103134
This paper introduces the Systematic mAlware detection in android (STAR) technique designed to enhance accuracy in identifying and classifying Android malware, addressing significant concerns regarding device security and data privacy. The STAR method involves comprehensive data collection from diverse datasets, rigorous preprocessing for data quality improvement, and feature extraction using Principal Component Analysis (PCA). Butterfly optimization ensures selection of pertinent features, while ensemble classifiers including Bagging, AdaBoost, and LogitBoost are employed for robust model creation. Final classification is achieved via majority voting. Experimental validation demonstrates that STAR outperforms existing techniques such as ERBE, De-LADY, and MSFDROID, achieving detection rates 4.34 %, 1.41 %, and 2.52 % higher respectively. This innovative approach underscores its potential in mitigating the evolving threat landscape of Android malware, offering a promising avenue for enhancing mobile app security.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.asej.2024.103134
- OA Status
- gold
- Cited By
- 6
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404409855
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404409855Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.asej.2024.103134Digital Object Identifier
- Title
-
Android traffic malware analysis and detection using ensemble classifierWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-15Full publication date if available
- Authors
-
A. Mohanraj, K. SivasankariList of authors in order
- Landing page
-
https://doi.org/10.1016/j.asej.2024.103134Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.asej.2024.103134Direct OA link when available
- Concepts
-
Android malware, Malware, Computer science, Classifier (UML), Android (operating system), Artificial intelligence, Android application, Ensemble learning, Machine learning, Pattern recognition (psychology), Computer security, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404409855 |
|---|---|
| doi | https://doi.org/10.1016/j.asej.2024.103134 |
| ids.doi | https://doi.org/10.1016/j.asej.2024.103134 |
| ids.openalex | https://openalex.org/W4404409855 |
| fwci | 4.27502559 |
| type | article |
| title | Android traffic malware analysis and detection using ensemble classifier |
| biblio.issue | 12 |
| biblio.volume | 15 |
| biblio.last_page | 103134 |
| biblio.first_page | 103134 |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list.value | 860 |
| apc_list.currency | USD |
| apc_list.value_usd | 860 |
| apc_paid.value | 860 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 860 |
| concepts[0].id | https://openalex.org/C2989133298 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7096834778785706 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[0].display_name | Android malware |
| concepts[1].id | https://openalex.org/C541664917 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6305238604545593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[1].display_name | Malware |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.55440354347229 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4812612235546112 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C557433098 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4752623438835144 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[4].display_name | Android (operating system) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4316452741622925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C3017891749 |
| concepts[6].level | 3 |
| concepts[6].score | 0.418190062046051 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[6].display_name | Android application |
| concepts[7].id | https://openalex.org/C45942800 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41370823979377747 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[7].display_name | Ensemble learning |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3795580267906189 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.34902748465538025 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C38652104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2863738536834717 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[10].display_name | Computer security |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18066230416297913 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/android-malware |
| keywords[0].score | 0.7096834778785706 |
| keywords[0].display_name | Android malware |
| keywords[1].id | https://openalex.org/keywords/malware |
| keywords[1].score | 0.6305238604545593 |
| keywords[1].display_name | Malware |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.55440354347229 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.4812612235546112 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/android |
| keywords[4].score | 0.4752623438835144 |
| keywords[4].display_name | Android (operating system) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4316452741622925 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/android-application |
| keywords[6].score | 0.418190062046051 |
| keywords[6].display_name | Android application |
| keywords[7].id | https://openalex.org/keywords/ensemble-learning |
| keywords[7].score | 0.41370823979377747 |
| keywords[7].display_name | Ensemble learning |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3795580267906189 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.34902748465538025 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/computer-security |
| keywords[10].score | 0.2863738536834717 |
| keywords[10].display_name | Computer security |
| keywords[11].id | https://openalex.org/keywords/operating-system |
| keywords[11].score | 0.18066230416297913 |
| keywords[11].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1016/j.asej.2024.103134 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764993483 |
| locations[0].source.issn | 2090-4479, 2090-4495 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2090-4479 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ain Shams Engineering Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ain Shams Engineering Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.asej.2024.103134 |
| locations[1].id | pmh:oai:doaj.org/article:3824bbd6567941ed975bbb7b2a2b75f8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ain Shams Engineering Journal, Vol 15, Iss 12, Pp 103134- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/3824bbd6567941ed975bbb7b2a2b75f8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5026911000 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | A. Mohanraj |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. Mohanraj |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102000875 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | K. Sivasankari |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | K. Sivasankari |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.asej.2024.103134 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Android traffic malware analysis and detection using ensemble classifier |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2560361988, https://openalex.org/W2507113366, https://openalex.org/W2591124010, https://openalex.org/W3200508744, https://openalex.org/W3025122950, https://openalex.org/W2311926078, https://openalex.org/W2895504842, https://openalex.org/W4281384336, https://openalex.org/W2717179875, https://openalex.org/W4249118297 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.asej.2024.103134 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764993483 |
| best_oa_location.source.issn | 2090-4479, 2090-4495 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2090-4479 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ain Shams Engineering Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ain Shams Engineering Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.asej.2024.103134 |
| primary_location.id | doi:10.1016/j.asej.2024.103134 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764993483 |
| primary_location.source.issn | 2090-4479, 2090-4495 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2090-4479 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ain Shams Engineering Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ain Shams Engineering Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.asej.2024.103134 |
| publication_date | 2024-11-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6763804210, https://openalex.org/W2611652334, https://openalex.org/W4224219407, https://openalex.org/W2771588979, https://openalex.org/W2333386463, https://openalex.org/W2320904272, https://openalex.org/W4214819500, https://openalex.org/W4321373360, https://openalex.org/W967998618, https://openalex.org/W4385446761, https://openalex.org/W6787129944, https://openalex.org/W2268996991, https://openalex.org/W2996143878, https://openalex.org/W6792198795, https://openalex.org/W3113168908, https://openalex.org/W3163053370, https://openalex.org/W6797607759, https://openalex.org/W4312724275, https://openalex.org/W4281657070, https://openalex.org/W6854209042, https://openalex.org/W4385368987, https://openalex.org/W4323539141, https://openalex.org/W6859898074, https://openalex.org/W4392697189, https://openalex.org/W2950777238, https://openalex.org/W4382240482, https://openalex.org/W3177025178, https://openalex.org/W3142234974, https://openalex.org/W4389833619, https://openalex.org/W3111135321 |
| referenced_works_count | 30 |
| abstract_inverted_index.% | 105 |
| abstract_inverted_index.a | 124 |
| abstract_inverted_index.%, | 100, 102 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.in | 7, 15, 114 |
| abstract_inverted_index.is | 77 |
| abstract_inverted_index.of | 58, 120 |
| abstract_inverted_index.to | 12 |
| abstract_inverted_index.The | 30 |
| abstract_inverted_index.and | 17, 27, 46, 67, 94, 103 |
| abstract_inverted_index.app | 130 |
| abstract_inverted_index.are | 69 |
| abstract_inverted_index.for | 42, 71, 127 |
| abstract_inverted_index.its | 112 |
| abstract_inverted_index.the | 3, 116 |
| abstract_inverted_index.via | 79 |
| abstract_inverted_index.1.41 | 101 |
| abstract_inverted_index.2.52 | 104 |
| abstract_inverted_index.4.34 | 99 |
| abstract_inverted_index.STAR | 31, 86 |
| abstract_inverted_index.This | 0, 108 |
| abstract_inverted_index.data | 28, 35, 43 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.such | 90 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.ERBE, | 92 |
| abstract_inverted_index.Final | 75 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rates | 98 |
| abstract_inverted_index.using | 49 |
| abstract_inverted_index.while | 61 |
| abstract_inverted_index.(PCA). | 53 |
| abstract_inverted_index.(STAR) | 9 |
| abstract_inverted_index.avenue | 126 |
| abstract_inverted_index.device | 25 |
| abstract_inverted_index.higher | 106 |
| abstract_inverted_index.method | 32 |
| abstract_inverted_index.mobile | 129 |
| abstract_inverted_index.robust | 72 |
| abstract_inverted_index.threat | 118 |
| abstract_inverted_index.Android | 19, 121 |
| abstract_inverted_index.android | 8 |
| abstract_inverted_index.diverse | 38 |
| abstract_inverted_index.enhance | 13 |
| abstract_inverted_index.ensures | 56 |
| abstract_inverted_index.feature | 47 |
| abstract_inverted_index.mAlware | 5 |
| abstract_inverted_index.quality | 44 |
| abstract_inverted_index.voting. | 81 |
| abstract_inverted_index.Analysis | 52 |
| abstract_inverted_index.Bagging, | 65 |
| abstract_inverted_index.De-LADY, | 93 |
| abstract_inverted_index.accuracy | 14 |
| abstract_inverted_index.achieved | 78 |
| abstract_inverted_index.approach | 110 |
| abstract_inverted_index.concerns | 23 |
| abstract_inverted_index.designed | 11 |
| abstract_inverted_index.employed | 70 |
| abstract_inverted_index.ensemble | 62 |
| abstract_inverted_index.evolving | 117 |
| abstract_inverted_index.existing | 88 |
| abstract_inverted_index.involves | 33 |
| abstract_inverted_index.majority | 80 |
| abstract_inverted_index.malware, | 20, 122 |
| abstract_inverted_index.offering | 123 |
| abstract_inverted_index.privacy. | 29 |
| abstract_inverted_index.rigorous | 40 |
| abstract_inverted_index.security | 26 |
| abstract_inverted_index.AdaBoost, | 66 |
| abstract_inverted_index.Butterfly | 54 |
| abstract_inverted_index.Component | 51 |
| abstract_inverted_index.MSFDROID, | 95 |
| abstract_inverted_index.Principal | 50 |
| abstract_inverted_index.achieving | 96 |
| abstract_inverted_index.creation. | 74 |
| abstract_inverted_index.datasets, | 39 |
| abstract_inverted_index.detection | 6, 97 |
| abstract_inverted_index.enhancing | 128 |
| abstract_inverted_index.features, | 60 |
| abstract_inverted_index.including | 64 |
| abstract_inverted_index.landscape | 119 |
| abstract_inverted_index.pertinent | 59 |
| abstract_inverted_index.potential | 113 |
| abstract_inverted_index.promising | 125 |
| abstract_inverted_index.regarding | 24 |
| abstract_inverted_index.security. | 131 |
| abstract_inverted_index.selection | 57 |
| abstract_inverted_index.technique | 10 |
| abstract_inverted_index.LogitBoost | 68 |
| abstract_inverted_index.Systematic | 4 |
| abstract_inverted_index.addressing | 21 |
| abstract_inverted_index.collection | 36 |
| abstract_inverted_index.extraction | 48 |
| abstract_inverted_index.innovative | 109 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.mitigating | 115 |
| abstract_inverted_index.techniques | 89 |
| abstract_inverted_index.validation | 83 |
| abstract_inverted_index.classifiers | 63 |
| abstract_inverted_index.classifying | 18 |
| abstract_inverted_index.identifying | 16 |
| abstract_inverted_index.outperforms | 87 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.underscores | 111 |
| abstract_inverted_index.Experimental | 82 |
| abstract_inverted_index.demonstrates | 84 |
| abstract_inverted_index.improvement, | 45 |
| abstract_inverted_index.optimization | 55 |
| abstract_inverted_index.comprehensive | 34 |
| abstract_inverted_index.preprocessing | 41 |
| abstract_inverted_index.respectively. | 107 |
| abstract_inverted_index.classification | 76 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.92458983 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |