ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column Morphology Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/buildings15132351
The drilling and blasting method is commonly employed for the rapid demolition of outdated buildings by destroying key structural components and inducing progressive collapse. The residual bearing capacity of these components is governed by the deformation morphology of the longitudinal reinforcement, characterized by bending deflection and exposed height. This study develops and validates a finite element (FE) model of a reinforced concrete (RC) column subjected to demolition blasting. By varying concrete compressive strength, the yield strength of longitudinal reinforcement, the longitudinal reinforcement ratio, and the shear reinforcement ratio, 45 FE models are established to simulate the post-blast morphology of longitudinal reinforcement. Two databases are created: one containing 45 original simulation cases, and an augmented version with 225 cases generated through data augmentation. To predict bending deflection and the exposed height of longitudinal reinforcement, artificial neural network (ANN) and random forest (RF) models are optimized using the hunter–prey optimization (HPO) algorithm. Results show that the HPO-optimized RF model trained on the augmented database achieves the best performance, with MSE, MAE, and R2 values of 0.004, 0.041, and 0.931 on the training set, and 0.007, 0.057, and 0.865 on the testing set, respectively. Sensitivity analysis reveals that the yield strength of longitudinal reinforcement has the most significant impact, while the shear reinforcement ratio has the least influence on both output variables. The partial dependence plot (PDP) analysis indicates that the ratio of shear reinforcement has the most significant impact on the deformation of longitudinal reinforcement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/buildings15132351
- https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962
- OA Status
- gold
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412019886
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412019886Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/buildings15132351Digital Object Identifier
- Title
-
ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column MorphologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-04Full publication date if available
- Authors
-
Kai Rong, Yongsheng Jia, Yingkang Yao, Jinshan Sun, Qi Yu, Hongliang Tang, Jun Yang, Xianqi XieList of authors in order
- Landing page
-
https://doi.org/10.3390/buildings15132351Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962Direct OA link when available
- Concepts
-
Morphology (biology), Column (typography), Materials science, Algorithm, Computer science, Structural engineering, Engineering, Biology, Zoology, Connection (principal bundle)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412019886 |
|---|---|
| doi | https://doi.org/10.3390/buildings15132351 |
| ids.doi | https://doi.org/10.3390/buildings15132351 |
| ids.openalex | https://openalex.org/W4412019886 |
| fwci | 0.0 |
| type | article |
| title | ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column Morphology |
| biblio.issue | 13 |
| biblio.volume | 15 |
| biblio.last_page | 2351 |
| biblio.first_page | 2351 |
| topics[0].id | https://openalex.org/T11874 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.940500020980835 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Response to Dynamic Loads |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C499950583 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6548671126365662 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q183252 |
| concepts[0].display_name | Morphology (biology) |
| concepts[1].id | https://openalex.org/C2780551164 |
| concepts[1].level | 3 |
| concepts[1].score | 0.541142463684082 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2306599 |
| concepts[1].display_name | Column (typography) |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45400428771972656 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.329612135887146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.29890114068984985 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C66938386 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2884340286254883 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[5].display_name | Structural engineering |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2669939696788788 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11756348609924316 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C90856448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10102292895317078 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q431 |
| concepts[8].display_name | Zoology |
| concepts[9].id | https://openalex.org/C13355873 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2920850 |
| concepts[9].display_name | Connection (principal bundle) |
| keywords[0].id | https://openalex.org/keywords/morphology |
| keywords[0].score | 0.6548671126365662 |
| keywords[0].display_name | Morphology (biology) |
| keywords[1].id | https://openalex.org/keywords/column |
| keywords[1].score | 0.541142463684082 |
| keywords[1].display_name | Column (typography) |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.45400428771972656 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.329612135887146 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.29890114068984985 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/structural-engineering |
| keywords[5].score | 0.2884340286254883 |
| keywords[5].display_name | Structural engineering |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.2669939696788788 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.11756348609924316 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/zoology |
| keywords[8].score | 0.10102292895317078 |
| keywords[8].display_name | Zoology |
| language | en |
| locations[0].id | doi:10.3390/buildings15132351 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191137 |
| locations[0].source.issn | 2075-5309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-5309 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Buildings |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Buildings |
| locations[0].landing_page_url | https://doi.org/10.3390/buildings15132351 |
| locations[1].id | pmh:oai:doaj.org/article:905465284ee14f76a75ded22702de484 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Buildings, Vol 15, Iss 13, p 2351 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/905465284ee14f76a75ded22702de484 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5018701062 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-6615-5408 |
| authorships[0].author.display_name | Kai Rong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I31590910 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[1].raw_affiliation_string | State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I31590910 |
| authorships[0].institutions[1].ror | https://ror.org/041c9x778 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I31590910 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Jianghan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kai Rong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China, State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[1].author.id | https://openalex.org/A5111316985 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-9115-3676 |
| authorships[1].author.display_name | Yongsheng Jia |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31590910 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[1].institutions[0].id | https://openalex.org/I31590910 |
| authorships[1].institutions[0].ror | https://ror.org/041c9x778 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31590910 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jianghan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongsheng Jia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[2].author.id | https://openalex.org/A5046715755 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4613-4552 |
| authorships[2].author.display_name | Yingkang Yao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I31590910 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I31590910 |
| authorships[2].affiliations[1].raw_affiliation_string | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China |
| authorships[2].institutions[0].id | https://openalex.org/I31590910 |
| authorships[2].institutions[0].ror | https://ror.org/041c9x778 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I31590910 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jianghan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yingkang Yao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China, State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[3].author.id | https://openalex.org/A5078903585 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3919-2153 |
| authorships[3].author.display_name | Jinshan Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I31590910 |
| authorships[3].affiliations[0].raw_affiliation_string | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I31590910 |
| authorships[3].affiliations[1].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[3].institutions[0].id | https://openalex.org/I31590910 |
| authorships[3].institutions[0].ror | https://ror.org/041c9x778 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I31590910 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jianghan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinshan Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China, State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[4].author.id | https://openalex.org/A5072084015 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3512-5463 |
| authorships[4].author.display_name | Qi Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3174185376 |
| authorships[4].affiliations[0].raw_affiliation_string | China Safety Technology Research Academy of Ordnance Industry, Beijing 100053, China |
| authorships[4].institutions[0].id | https://openalex.org/I3174185376 |
| authorships[4].institutions[0].ror | https://ror.org/04n0f2b96 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I3174185376 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China South Industries Group (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qi Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | China Safety Technology Research Academy of Ordnance Industry, Beijing 100053, China |
| authorships[5].author.id | https://openalex.org/A5038435657 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2196-1834 |
| authorships[5].author.display_name | Hongliang Tang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3174185376 |
| authorships[5].affiliations[0].raw_affiliation_string | China Safety Technology Research Academy of Ordnance Industry, Beijing 100053, China |
| authorships[5].institutions[0].id | https://openalex.org/I3174185376 |
| authorships[5].institutions[0].ror | https://ror.org/04n0f2b96 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I3174185376 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China South Industries Group (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hongliang Tang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China Safety Technology Research Academy of Ordnance Industry, Beijing 100053, China |
| authorships[6].author.id | https://openalex.org/A5100719887 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7356-2771 |
| authorships[6].author.display_name | Jun Yang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[6].affiliations[0].raw_affiliation_string | State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I31590910 |
| authorships[6].affiliations[1].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[6].institutions[0].id | https://openalex.org/I125839683 |
| authorships[6].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beijing Institute of Technology |
| authorships[6].institutions[1].id | https://openalex.org/I31590910 |
| authorships[6].institutions[1].ror | https://ror.org/041c9x778 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I31590910 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Jianghan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jun Yang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China, State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[7].author.id | https://openalex.org/A5055277947 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Xianqi Xie |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I31590910 |
| authorships[7].affiliations[0].raw_affiliation_string | State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I31590910 |
| authorships[7].affiliations[1].raw_affiliation_string | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China |
| authorships[7].institutions[0].id | https://openalex.org/I31590910 |
| authorships[7].institutions[0].ror | https://ror.org/041c9x778 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I31590910 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Jianghan University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Xianqi Xie |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China, State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column Morphology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11874 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.940500020980835 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Response to Dynamic Loads |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W4409278740, https://openalex.org/W2051487156, https://openalex.org/W2898370298, https://openalex.org/W4410118003 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/buildings15132351 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191137 |
| best_oa_location.source.issn | 2075-5309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-5309 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Buildings |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Buildings |
| best_oa_location.landing_page_url | https://doi.org/10.3390/buildings15132351 |
| primary_location.id | doi:10.3390/buildings15132351 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191137 |
| primary_location.source.issn | 2075-5309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-5309 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Buildings |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-5309/15/13/2351/pdf?version=1751633962 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Buildings |
| primary_location.landing_page_url | https://doi.org/10.3390/buildings15132351 |
| publication_date | 2025-07-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3128321956, https://openalex.org/W3204146702, https://openalex.org/W4321071955, https://openalex.org/W3007535714, https://openalex.org/W4304959216, https://openalex.org/W2467419218, https://openalex.org/W1984595488, https://openalex.org/W4200134467, https://openalex.org/W2072345368, https://openalex.org/W2140443861, https://openalex.org/W1989152578, https://openalex.org/W2387637783, https://openalex.org/W2084501324, https://openalex.org/W3098963402, https://openalex.org/W2604678503, https://openalex.org/W4220766488, https://openalex.org/W4292253177, https://openalex.org/W2806773014, https://openalex.org/W4311773706, https://openalex.org/W4396521000, https://openalex.org/W6838417083, https://openalex.org/W3005840099, https://openalex.org/W4206908800, https://openalex.org/W4292265082, https://openalex.org/W3047812935, https://openalex.org/W4206926244, https://openalex.org/W3157404655, https://openalex.org/W2774406149, https://openalex.org/W3161013510, https://openalex.org/W2931882715, https://openalex.org/W2146599679, https://openalex.org/W6702438356, https://openalex.org/W2974473816, https://openalex.org/W6603812158, https://openalex.org/W3041283564, https://openalex.org/W3177667246, https://openalex.org/W2809598685, https://openalex.org/W6838550769, https://openalex.org/W4396705713, https://openalex.org/W3046296398, https://openalex.org/W2912868165, https://openalex.org/W2953395395, https://openalex.org/W2023009369, https://openalex.org/W2911964244, https://openalex.org/W3215102838, https://openalex.org/W2028568622, https://openalex.org/W3210258470, https://openalex.org/W2041650879, https://openalex.org/W1998987927, https://openalex.org/W4224326288, https://openalex.org/W3001553585, https://openalex.org/W3047806505, https://openalex.org/W2484215240 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 53, 59 |
| abstract_inverted_index.45 | 88, 107 |
| abstract_inverted_index.By | 68 |
| abstract_inverted_index.FE | 89 |
| abstract_inverted_index.R2 | 170 |
| abstract_inverted_index.RF | 155 |
| abstract_inverted_index.To | 122 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.by | 15, 33, 42 |
| abstract_inverted_index.is | 5, 31 |
| abstract_inverted_index.of | 12, 28, 37, 58, 76, 98, 130, 172, 198, 229, 240 |
| abstract_inverted_index.on | 158, 177, 186, 215, 237 |
| abstract_inverted_index.to | 65, 93 |
| abstract_inverted_index.225 | 116 |
| abstract_inverted_index.The | 0, 24, 219 |
| abstract_inverted_index.Two | 101 |
| abstract_inverted_index.and | 2, 20, 45, 51, 83, 111, 126, 137, 169, 175, 181, 184 |
| abstract_inverted_index.are | 91, 103, 142 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.has | 201, 211, 232 |
| abstract_inverted_index.key | 17 |
| abstract_inverted_index.one | 105 |
| abstract_inverted_index.the | 9, 34, 38, 73, 79, 84, 95, 127, 145, 153, 159, 163, 178, 187, 195, 202, 207, 212, 227, 233, 238 |
| abstract_inverted_index.(FE) | 56 |
| abstract_inverted_index.(RC) | 62 |
| abstract_inverted_index.(RF) | 140 |
| abstract_inverted_index.MAE, | 168 |
| abstract_inverted_index.MSE, | 167 |
| abstract_inverted_index.This | 48 |
| abstract_inverted_index.best | 164 |
| abstract_inverted_index.both | 216 |
| abstract_inverted_index.data | 120 |
| abstract_inverted_index.most | 203, 234 |
| abstract_inverted_index.plot | 222 |
| abstract_inverted_index.set, | 180, 189 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.that | 152, 194, 226 |
| abstract_inverted_index.with | 115, 166 |
| abstract_inverted_index.(ANN) | 136 |
| abstract_inverted_index.(HPO) | 148 |
| abstract_inverted_index.(PDP) | 223 |
| abstract_inverted_index.0.865 | 185 |
| abstract_inverted_index.0.931 | 176 |
| abstract_inverted_index.cases | 117 |
| abstract_inverted_index.least | 213 |
| abstract_inverted_index.model | 57, 156 |
| abstract_inverted_index.rapid | 10 |
| abstract_inverted_index.ratio | 210, 228 |
| abstract_inverted_index.shear | 85, 208, 230 |
| abstract_inverted_index.study | 49 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.using | 144 |
| abstract_inverted_index.while | 206 |
| abstract_inverted_index.yield | 74, 196 |
| abstract_inverted_index.0.004, | 173 |
| abstract_inverted_index.0.007, | 182 |
| abstract_inverted_index.0.041, | 174 |
| abstract_inverted_index.0.057, | 183 |
| abstract_inverted_index.cases, | 110 |
| abstract_inverted_index.column | 63 |
| abstract_inverted_index.finite | 54 |
| abstract_inverted_index.forest | 139 |
| abstract_inverted_index.height | 129 |
| abstract_inverted_index.impact | 236 |
| abstract_inverted_index.method | 4 |
| abstract_inverted_index.models | 90, 141 |
| abstract_inverted_index.neural | 134 |
| abstract_inverted_index.output | 217 |
| abstract_inverted_index.random | 138 |
| abstract_inverted_index.ratio, | 82, 87 |
| abstract_inverted_index.values | 171 |
| abstract_inverted_index.Results | 150 |
| abstract_inverted_index.bearing | 26 |
| abstract_inverted_index.bending | 43, 124 |
| abstract_inverted_index.element | 55 |
| abstract_inverted_index.exposed | 46, 128 |
| abstract_inverted_index.height. | 47 |
| abstract_inverted_index.impact, | 205 |
| abstract_inverted_index.network | 135 |
| abstract_inverted_index.partial | 220 |
| abstract_inverted_index.predict | 123 |
| abstract_inverted_index.reveals | 193 |
| abstract_inverted_index.testing | 188 |
| abstract_inverted_index.through | 119 |
| abstract_inverted_index.trained | 157 |
| abstract_inverted_index.varying | 69 |
| abstract_inverted_index.version | 114 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.analysis | 192, 224 |
| abstract_inverted_index.blasting | 3 |
| abstract_inverted_index.capacity | 27 |
| abstract_inverted_index.commonly | 6 |
| abstract_inverted_index.concrete | 61, 70 |
| abstract_inverted_index.created: | 104 |
| abstract_inverted_index.database | 161 |
| abstract_inverted_index.develops | 50 |
| abstract_inverted_index.drilling | 1 |
| abstract_inverted_index.employed | 7 |
| abstract_inverted_index.governed | 32 |
| abstract_inverted_index.inducing | 21 |
| abstract_inverted_index.original | 108 |
| abstract_inverted_index.outdated | 13 |
| abstract_inverted_index.residual | 25 |
| abstract_inverted_index.simulate | 94 |
| abstract_inverted_index.strength | 75, 197 |
| abstract_inverted_index.training | 179 |
| abstract_inverted_index.augmented | 113, 160 |
| abstract_inverted_index.blasting. | 67 |
| abstract_inverted_index.buildings | 14 |
| abstract_inverted_index.collapse. | 23 |
| abstract_inverted_index.databases | 102 |
| abstract_inverted_index.generated | 118 |
| abstract_inverted_index.indicates | 225 |
| abstract_inverted_index.influence | 214 |
| abstract_inverted_index.optimized | 143 |
| abstract_inverted_index.strength, | 72 |
| abstract_inverted_index.subjected | 64 |
| abstract_inverted_index.validates | 52 |
| abstract_inverted_index.algorithm. | 149 |
| abstract_inverted_index.artificial | 133 |
| abstract_inverted_index.components | 19, 30 |
| abstract_inverted_index.containing | 106 |
| abstract_inverted_index.deflection | 44, 125 |
| abstract_inverted_index.demolition | 11, 66 |
| abstract_inverted_index.dependence | 221 |
| abstract_inverted_index.destroying | 16 |
| abstract_inverted_index.morphology | 36, 97 |
| abstract_inverted_index.post-blast | 96 |
| abstract_inverted_index.reinforced | 60 |
| abstract_inverted_index.simulation | 109 |
| abstract_inverted_index.structural | 18 |
| abstract_inverted_index.variables. | 218 |
| abstract_inverted_index.Sensitivity | 191 |
| abstract_inverted_index.compressive | 71 |
| abstract_inverted_index.deformation | 35, 239 |
| abstract_inverted_index.established | 92 |
| abstract_inverted_index.progressive | 22 |
| abstract_inverted_index.significant | 204, 235 |
| abstract_inverted_index.longitudinal | 39, 77, 80, 99, 131, 199, 241 |
| abstract_inverted_index.optimization | 147 |
| abstract_inverted_index.performance, | 165 |
| abstract_inverted_index.HPO-optimized | 154 |
| abstract_inverted_index.augmentation. | 121 |
| abstract_inverted_index.characterized | 41 |
| abstract_inverted_index.hunter–prey | 146 |
| abstract_inverted_index.reinforcement | 81, 86, 200, 209, 231 |
| abstract_inverted_index.respectively. | 190 |
| abstract_inverted_index.reinforcement, | 40, 78, 132 |
| abstract_inverted_index.reinforcement. | 100, 242 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.30315025 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |