Anomalous Traffic Filtering Algorithm for Power Wireless Sensor Networks Based on Feature Clustering Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2979/1/012002
Conventional power wireless sensor network anomalous traffic filtering algorithm measurement structure is generally set as a unidirectional structure, the filtering efficiency is low, resulting in an increase in the absolute error of the filtering measurement, which puts forward the design and analysis of the feature clustering-based power wireless sensor network anomalous traffic filtering algorithm. According to the current measurement requirements, first extract the abnormal traffic features, adopt the multi-order approach to improve the filtering efficiency, design the multi-order power wireless sensing network abnormal traffic filtering measurement structure, based on this, construct the feature clustering network abnormal traffic filtering algorithm model, and use the adaptive checking processing to realize the filtering measurement. The test results show that the absolute error of the final filtering algorithm is well controlled below 0.7, which indicates that the designed abnormal traffic filtering algorithm of electric power wireless sensor network combined with feature clustering is more flexible, versatile, and more targeted, and has practical application value.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2979/1/012002
- OA Status
- diamond
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411541379
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411541379Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2979/1/012002Digital Object Identifier
- Title
-
Anomalous Traffic Filtering Algorithm for Power Wireless Sensor Networks Based on Feature ClusteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-01Full publication date if available
- Authors
-
Qidi Jiao, Dingding Li, Shuai Cheng Li, Han Liu, Y. X. SongList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2979/1/012002Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2979/1/012002Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Wireless sensor network, Algorithm, Wireless, Feature (linguistics), Real-time computing, Power (physics), Data mining, Artificial intelligence, Computer network, Telecommunications, Philosophy, Physics, Quantum mechanics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411541379 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| ids.doi | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| ids.openalex | https://openalex.org/W4411541379 |
| fwci | 0.0 |
| type | article |
| title | Anomalous Traffic Filtering Algorithm for Power Wireless Sensor Networks Based on Feature Clustering |
| biblio.issue | 1 |
| biblio.volume | 2979 |
| biblio.last_page | 012002 |
| biblio.first_page | 012002 |
| topics[0].id | https://openalex.org/T10080 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9581000208854675 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Energy Efficient Wireless Sensor Networks |
| topics[1].id | https://openalex.org/T13535 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9521999955177307 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Wireless Sensor Networks and IoT |
| topics[2].id | https://openalex.org/T14413 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9416000247001648 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Technologies in Various Fields |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7479588985443115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6904736757278442 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C24590314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6872824430465698 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[2].display_name | Wireless sensor network |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5515866875648499 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C555944384 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4940531551837921 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[4].display_name | Wireless |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4870651066303253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4260820746421814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C163258240 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41949862241744995 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[7].display_name | Power (physics) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3257823586463928 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.22439485788345337 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16765019297599792 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06798151135444641 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7479588985443115 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6904736757278442 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[2].score | 0.6872824430465698 |
| keywords[2].display_name | Wireless sensor network |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5515866875648499 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/wireless |
| keywords[4].score | 0.4940531551837921 |
| keywords[4].display_name | Wireless |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4870651066303253 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.4260820746421814 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/power |
| keywords[7].score | 0.41949862241744995 |
| keywords[7].display_name | Power (physics) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3257823586463928 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.22439485788345337 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.16765019297599792 |
| keywords[10].display_name | Computer network |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.06798151135444641 |
| keywords[11].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2979/1/012002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112692258 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Qidi Jiao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qidi Jiao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030351502 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9092-9814 |
| authorships[1].author.display_name | Dingding Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dingding Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083428910 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6246-6349 |
| authorships[2].author.display_name | Shuai Cheng Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shuai Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021954978 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2822-5298 |
| authorships[3].author.display_name | Han Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Han Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101726152 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0256-4320 |
| authorships[4].author.display_name | Y. X. Song |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yifan Song |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Anomalous Traffic Filtering Algorithm for Power Wireless Sensor Networks Based on Feature Clustering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10080 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9581000208854675 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Energy Efficient Wireless Sensor Networks |
| related_works | https://openalex.org/W4298130764, https://openalex.org/W2804364458, https://openalex.org/W2132641928, https://openalex.org/W4310225030, https://openalex.org/W2090259340, https://openalex.org/W1926736923, https://openalex.org/W2158836806, https://openalex.org/W2393816671, https://openalex.org/W2083665254, https://openalex.org/W1975451135 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2979/1/012002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| primary_location.id | doi:10.1088/1742-6596/2979/1/012002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2979/1/012002 |
| publication_date | 2025-06-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4280595744, https://openalex.org/W4200184914, https://openalex.org/W3152806792, https://openalex.org/W3128286744, https://openalex.org/W3175563894, https://openalex.org/W3128598381, https://openalex.org/W3168903299, https://openalex.org/W3152890116 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 16 |
| abstract_inverted_index.an | 26 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.in | 25, 28 |
| abstract_inverted_index.is | 12, 22, 125, 149 |
| abstract_inverted_index.of | 32, 43, 120, 139 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 56, 71, 107 |
| abstract_inverted_index.The | 112 |
| abstract_inverted_index.and | 41, 101, 153, 156 |
| abstract_inverted_index.has | 157 |
| abstract_inverted_index.set | 14 |
| abstract_inverted_index.the | 19, 29, 33, 39, 44, 57, 63, 68, 73, 77, 92, 103, 109, 117, 121, 133 |
| abstract_inverted_index.use | 102 |
| abstract_inverted_index.0.7, | 129 |
| abstract_inverted_index.low, | 23 |
| abstract_inverted_index.more | 150, 154 |
| abstract_inverted_index.puts | 37 |
| abstract_inverted_index.show | 115 |
| abstract_inverted_index.test | 113 |
| abstract_inverted_index.that | 116, 132 |
| abstract_inverted_index.well | 126 |
| abstract_inverted_index.with | 146 |
| abstract_inverted_index.adopt | 67 |
| abstract_inverted_index.based | 88 |
| abstract_inverted_index.below | 128 |
| abstract_inverted_index.error | 31, 119 |
| abstract_inverted_index.final | 122 |
| abstract_inverted_index.first | 61 |
| abstract_inverted_index.power | 2, 47, 79, 141 |
| abstract_inverted_index.this, | 90 |
| abstract_inverted_index.which | 36, 130 |
| abstract_inverted_index.design | 40, 76 |
| abstract_inverted_index.model, | 100 |
| abstract_inverted_index.sensor | 4, 49, 143 |
| abstract_inverted_index.value. | 160 |
| abstract_inverted_index.current | 58 |
| abstract_inverted_index.extract | 62 |
| abstract_inverted_index.feature | 45, 93, 147 |
| abstract_inverted_index.forward | 38 |
| abstract_inverted_index.improve | 72 |
| abstract_inverted_index.network | 5, 50, 82, 95, 144 |
| abstract_inverted_index.realize | 108 |
| abstract_inverted_index.results | 114 |
| abstract_inverted_index.sensing | 81 |
| abstract_inverted_index.traffic | 7, 52, 65, 84, 97, 136 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.abnormal | 64, 83, 96, 135 |
| abstract_inverted_index.absolute | 30, 118 |
| abstract_inverted_index.adaptive | 104 |
| abstract_inverted_index.analysis | 42 |
| abstract_inverted_index.approach | 70 |
| abstract_inverted_index.checking | 105 |
| abstract_inverted_index.combined | 145 |
| abstract_inverted_index.designed | 134 |
| abstract_inverted_index.electric | 140 |
| abstract_inverted_index.increase | 27 |
| abstract_inverted_index.wireless | 3, 48, 80, 142 |
| abstract_inverted_index.According | 55 |
| abstract_inverted_index.algorithm | 9, 99, 124, 138 |
| abstract_inverted_index.anomalous | 6, 51 |
| abstract_inverted_index.construct | 91 |
| abstract_inverted_index.features, | 66 |
| abstract_inverted_index.filtering | 8, 20, 34, 53, 74, 85, 98, 110, 123, 137 |
| abstract_inverted_index.flexible, | 151 |
| abstract_inverted_index.generally | 13 |
| abstract_inverted_index.indicates | 131 |
| abstract_inverted_index.practical | 158 |
| abstract_inverted_index.resulting | 24 |
| abstract_inverted_index.structure | 11 |
| abstract_inverted_index.targeted, | 155 |
| abstract_inverted_index.algorithm. | 54 |
| abstract_inverted_index.clustering | 94, 148 |
| abstract_inverted_index.controlled | 127 |
| abstract_inverted_index.efficiency | 21 |
| abstract_inverted_index.processing | 106 |
| abstract_inverted_index.structure, | 18, 87 |
| abstract_inverted_index.versatile, | 152 |
| abstract_inverted_index.application | 159 |
| abstract_inverted_index.efficiency, | 75 |
| abstract_inverted_index.measurement | 10, 59, 86 |
| abstract_inverted_index.multi-order | 69, 78 |
| abstract_inverted_index.Conventional | 1 |
| abstract_inverted_index.measurement, | 35 |
| abstract_inverted_index.measurement. | 111 |
| abstract_inverted_index.requirements, | 60 |
| abstract_inverted_index.unidirectional | 17 |
| abstract_inverted_index.clustering-based | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.2753106 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |