Anomaly Detection For Time Series Data Based on Multi-granularity Neighbor Residual Network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijcce.2022.10.001
Anomaly detection of time series data is one of the most important problems in industrial applications. Most of methods are difficult to obtain rich features of samples due to the lack of dimension. In this paper, we develop an anomaly detection method for time series data based on multi-granularity neighbor residual network (MGNRN). First, we construct a neighbor input vector with a sliding time window for each data sample, and define neighbor-based input matrix by considering multi-granularity neighborhood features. Second, we compute the linear and non-linear neighbor features of multi-granularity time windows for the sample. Finally, by combining the linear neighborhood residual with nonlinear residual, we predict the abnormal probability of the sample. Experiments verify the multi-granularity neighbor residual network improves the accuracy of abnormal detection, and show good performance on precision and F1 metrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ijcce.2022.10.001
- OA Status
- gold
- Cited By
- 6
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304688109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304688109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ijcce.2022.10.001Digital Object Identifier
- Title
-
Anomaly Detection For Time Series Data Based on Multi-granularity Neighbor Residual NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-01Full publication date if available
- Authors
-
Hailong Xie, Chenxian Hao, Jie Li, Min Li, Peng Luo, Jinpeng ZhuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ijcce.2022.10.001Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ijcce.2022.10.001Direct OA link when available
- Concepts
-
Granularity, Residual, Anomaly detection, Computer science, Data mining, Series (stratigraphy), Dimension (graph theory), Anomaly (physics), Time series, Sample (material), Nearest neighbor search, Algorithm, Pattern recognition (psychology), Artificial intelligence, Mathematics, Machine learning, Paleontology, Operating system, Condensed matter physics, Physics, Biology, Chromatography, Pure mathematics, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304688109 |
|---|---|
| doi | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| ids.doi | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| ids.openalex | https://openalex.org/W4304688109 |
| fwci | 1.17479292 |
| type | article |
| title | Anomaly Detection For Time Series Data Based on Multi-granularity Neighbor Residual Network |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | 187 |
| biblio.first_page | 180 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9909999966621399 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list.value | 800 |
| apc_list.currency | USD |
| apc_list.value_usd | 800 |
| apc_paid.value | 800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 800 |
| concepts[0].id | https://openalex.org/C177774035 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8954564332962036 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1246948 |
| concepts[0].display_name | Granularity |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.834884524345398 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6786922216415405 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6583808064460754 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5678631067276001 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C143724316 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5219763517379761 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[5].display_name | Series (stratigraphy) |
| concepts[6].id | https://openalex.org/C33676613 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49918484687805176 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[6].display_name | Dimension (graph theory) |
| concepts[7].id | https://openalex.org/C12997251 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49140870571136475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[7].display_name | Anomaly (physics) |
| concepts[8].id | https://openalex.org/C151406439 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44372260570526123 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[8].display_name | Time series |
| concepts[9].id | https://openalex.org/C198531522 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4345102906227112 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[9].display_name | Sample (material) |
| concepts[10].id | https://openalex.org/C116738811 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4327295422554016 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q608751 |
| concepts[10].display_name | Nearest neighbor search |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41747695207595825 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4010578989982605 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.33404994010925293 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.21682226657867432 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1536095142364502 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C26873012 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[18].display_name | Condensed matter physics |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C43617362 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[21].display_name | Chromatography |
| concepts[22].id | https://openalex.org/C202444582 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[22].display_name | Pure mathematics |
| concepts[23].id | https://openalex.org/C185592680 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[23].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/granularity |
| keywords[0].score | 0.8954564332962036 |
| keywords[0].display_name | Granularity |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.834884524345398 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.6786922216415405 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6583808064460754 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.5678631067276001 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/series |
| keywords[5].score | 0.5219763517379761 |
| keywords[5].display_name | Series (stratigraphy) |
| keywords[6].id | https://openalex.org/keywords/dimension |
| keywords[6].score | 0.49918484687805176 |
| keywords[6].display_name | Dimension (graph theory) |
| keywords[7].id | https://openalex.org/keywords/anomaly |
| keywords[7].score | 0.49140870571136475 |
| keywords[7].display_name | Anomaly (physics) |
| keywords[8].id | https://openalex.org/keywords/time-series |
| keywords[8].score | 0.44372260570526123 |
| keywords[8].display_name | Time series |
| keywords[9].id | https://openalex.org/keywords/sample |
| keywords[9].score | 0.4345102906227112 |
| keywords[9].display_name | Sample (material) |
| keywords[10].id | https://openalex.org/keywords/nearest-neighbor-search |
| keywords[10].score | 0.4327295422554016 |
| keywords[10].display_name | Nearest neighbor search |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.41747695207595825 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4010578989982605 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.33404994010925293 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.21682226657867432 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.1536095142364502 |
| keywords[15].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.ijcce.2022.10.001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210212586 |
| locations[0].source.issn | 2666-3074 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-3074 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Cognitive Computing in Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Cognitive Computing in Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| locations[1].id | pmh:oai:doaj.org/article:8ab97c7c9f5e46588a7ef66af8b2adfd |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Cognitive Computing in Engineering, Vol 3, Iss , Pp 180-187 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/8ab97c7c9f5e46588a7ef66af8b2adfd |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100301608 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hailong Xie |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210167045 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210167045 |
| authorships[0].institutions[0].ror | https://ror.org/05y7veh17 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210167045 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanxi Transportation Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hailong Xie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[1].author.id | https://openalex.org/A5080082359 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chenxian Hao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210167045 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210167045 |
| authorships[1].institutions[0].ror | https://ror.org/05y7veh17 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210167045 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanxi Transportation Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenxian Hao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[2].author.id | https://openalex.org/A5028750131 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2053-4662 |
| authorships[2].author.display_name | Jie Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210167045 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210167045 |
| authorships[2].institutions[0].ror | https://ror.org/05y7veh17 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210167045 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanxi Transportation Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jie Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[3].author.id | https://openalex.org/A5100400746 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5773-8976 |
| authorships[3].author.display_name | Min Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181877577 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China |
| authorships[3].institutions[0].id | https://openalex.org/I181877577 |
| authorships[3].institutions[0].ror | https://ror.org/03y3e3s17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181877577 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanxi University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Min Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China |
| authorships[4].author.id | https://openalex.org/A5103140655 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Peng Luo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210167045 |
| authorships[4].affiliations[0].raw_affiliation_string | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210167045 |
| authorships[4].institutions[0].ror | https://ror.org/05y7veh17 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210167045 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanxi Transportation Research Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peng Luo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[5].author.id | https://openalex.org/A5101199020 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jinpeng Zhu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210167045 |
| authorships[5].affiliations[0].raw_affiliation_string | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210167045 |
| authorships[5].institutions[0].ror | https://ror.org/05y7veh17 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210167045 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanxi Transportation Research Institute |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jinpeng Zhu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shanxi Provincial Transportation Construction Engineering Quality Inspection Center (Co., Ltd.), Taiyuan 030000, Shanxi, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Anomaly Detection For Time Series Data Based on Multi-granularity Neighbor Residual Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W114760076, https://openalex.org/W2076520961, https://openalex.org/W1989643030, https://openalex.org/W3091874484, https://openalex.org/W2984333088, https://openalex.org/W4287646207, https://openalex.org/W3192727092, https://openalex.org/W4386249425, https://openalex.org/W2063729131, https://openalex.org/W4377836944 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ijcce.2022.10.001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210212586 |
| best_oa_location.source.issn | 2666-3074 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-3074 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Cognitive Computing in Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Cognitive Computing in Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| primary_location.id | doi:10.1016/j.ijcce.2022.10.001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210212586 |
| primary_location.source.issn | 2666-3074 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-3074 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Cognitive Computing in Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Cognitive Computing in Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ijcce.2022.10.001 |
| publication_date | 2022-06-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2613480438, https://openalex.org/W1871988015, https://openalex.org/W2783205364, https://openalex.org/W2163922914, https://openalex.org/W6736296501, https://openalex.org/W2064314060, https://openalex.org/W6675354903, https://openalex.org/W18228458, https://openalex.org/W6766813257, https://openalex.org/W2104837959, https://openalex.org/W598667868, https://openalex.org/W1876967670, https://openalex.org/W3042356186, https://openalex.org/W2754384272, https://openalex.org/W2904458045, https://openalex.org/W4210546526, https://openalex.org/W4281760520, https://openalex.org/W2964032056, https://openalex.org/W2056234582, https://openalex.org/W6638278603, https://openalex.org/W6783155939, https://openalex.org/W6697265569, https://openalex.org/W2265638863, https://openalex.org/W2413321516, https://openalex.org/W2928232427, https://openalex.org/W2116210667, https://openalex.org/W3199919273, https://openalex.org/W6810412623, https://openalex.org/W2474046725, https://openalex.org/W1976331960, https://openalex.org/W6763324549, https://openalex.org/W2076063813, https://openalex.org/W2886020981, https://openalex.org/W2768800090, https://openalex.org/W2168156818, https://openalex.org/W2122646361, https://openalex.org/W2042763529, https://openalex.org/W6677585907, https://openalex.org/W6810912814, https://openalex.org/W2166277028, https://openalex.org/W2763099889, https://openalex.org/W6742000608, https://openalex.org/W2965203846, https://openalex.org/W2531563875, https://openalex.org/W4300874750, https://openalex.org/W2914059076, https://openalex.org/W2623012778, https://openalex.org/W1809588738, https://openalex.org/W4297814361, https://openalex.org/W4220772655, https://openalex.org/W2915011089, https://openalex.org/W4288335160, https://openalex.org/W4226306543 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 56, 61 |
| abstract_inverted_index.F1 | 133 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.by | 74, 96 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 2, 8, 17, 25, 31, 88, 110, 123 |
| abstract_inverted_index.on | 47, 130 |
| abstract_inverted_index.to | 21, 28 |
| abstract_inverted_index.we | 36, 54, 80, 105 |
| abstract_inverted_index.and | 69, 84, 126, 132 |
| abstract_inverted_index.are | 19 |
| abstract_inverted_index.due | 27 |
| abstract_inverted_index.for | 42, 65, 92 |
| abstract_inverted_index.one | 7 |
| abstract_inverted_index.the | 9, 29, 82, 93, 98, 107, 111, 115, 121 |
| abstract_inverted_index.Most | 16 |
| abstract_inverted_index.data | 5, 45, 67 |
| abstract_inverted_index.each | 66 |
| abstract_inverted_index.good | 128 |
| abstract_inverted_index.lack | 30 |
| abstract_inverted_index.most | 10 |
| abstract_inverted_index.rich | 23 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.time | 3, 43, 63, 90 |
| abstract_inverted_index.with | 60, 102 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.input | 58, 72 |
| abstract_inverted_index.First, | 53 |
| abstract_inverted_index.define | 70 |
| abstract_inverted_index.linear | 83, 99 |
| abstract_inverted_index.matrix | 73 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.obtain | 22 |
| abstract_inverted_index.paper, | 35 |
| abstract_inverted_index.series | 4, 44 |
| abstract_inverted_index.vector | 59 |
| abstract_inverted_index.verify | 114 |
| abstract_inverted_index.window | 64 |
| abstract_inverted_index.Anomaly | 0 |
| abstract_inverted_index.Second, | 79 |
| abstract_inverted_index.anomaly | 39 |
| abstract_inverted_index.compute | 81 |
| abstract_inverted_index.develop | 37 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.network | 51, 119 |
| abstract_inverted_index.predict | 106 |
| abstract_inverted_index.sample, | 68 |
| abstract_inverted_index.sample. | 94, 112 |
| abstract_inverted_index.samples | 26 |
| abstract_inverted_index.sliding | 62 |
| abstract_inverted_index.windows | 91 |
| abstract_inverted_index.(MGNRN). | 52 |
| abstract_inverted_index.Finally, | 95 |
| abstract_inverted_index.abnormal | 108, 124 |
| abstract_inverted_index.accuracy | 122 |
| abstract_inverted_index.features | 24, 87 |
| abstract_inverted_index.improves | 120 |
| abstract_inverted_index.metrics. | 134 |
| abstract_inverted_index.neighbor | 49, 57, 86, 117 |
| abstract_inverted_index.problems | 12 |
| abstract_inverted_index.residual | 50, 101, 118 |
| abstract_inverted_index.combining | 97 |
| abstract_inverted_index.construct | 55 |
| abstract_inverted_index.detection | 1, 40 |
| abstract_inverted_index.difficult | 20 |
| abstract_inverted_index.features. | 78 |
| abstract_inverted_index.important | 11 |
| abstract_inverted_index.nonlinear | 103 |
| abstract_inverted_index.precision | 131 |
| abstract_inverted_index.residual, | 104 |
| abstract_inverted_index.detection, | 125 |
| abstract_inverted_index.dimension. | 32 |
| abstract_inverted_index.industrial | 14 |
| abstract_inverted_index.non-linear | 85 |
| abstract_inverted_index.Experiments | 113 |
| abstract_inverted_index.considering | 75 |
| abstract_inverted_index.performance | 129 |
| abstract_inverted_index.probability | 109 |
| abstract_inverted_index.neighborhood | 77, 100 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.neighbor-based | 71 |
| abstract_inverted_index.multi-granularity | 48, 76, 89, 116 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5080082359 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210167045 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.78421667 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |