Anomaly Detection of Parasitic Plankton in Brebes Eco-Waters Using Vision-Based Autoencoder AI Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.35335/75mwxm55
The escalating impact of environmental stress on coastal ecosystems necessitates reliable, scalable tools for monitoring marine biodiversity. This study proposes an unsupervised anomaly detection framework to identify parasitic and morphologically abnormal plankton in the waters of Brebes, Indonesia. The primary aim is to develop an interpretable, vision-based system capable of detecting visual anomalies without relying on labeled anomaly data. The research integrates convolutional autoencoders for reconstructing normal plankton images, Principal Component Analysis (PCA) for feature extraction, and One-Class Support Vector Machines (OC-SVM) for classification. Monthly microscopic images were obtained from selected mangrove and aquaculture pond sites in Brebes, Central Java, using portable digital microscopy under standardized field conditions. Images that exceeded a dynamic reconstruction threshold were flagged as anomalous and validated by marine biology experts. The system achieved an F1-score of 86.1%, a precision of 85.3%, and an AUC of 0.94, demonstrating high effectiveness in distinguishing between normal and anomalous plankton. With an average inference time of 0.37 seconds per image, the system supports near real-time monitoring. These results confirm the potential of the proposed method as a low-latency, field-deployable solution for aquatic ecosystem surveillance. By integrating AI-based detection with ecological expert validation, this research offers a scalable approach for marine biodiversity assessment and establishes a foundation for future adaptive environmental monitoring systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.35335/75mwxm55
- https://pub.iocscience.org/index.php/Vertex/article/download/117/101
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4414822220
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414822220Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.35335/75mwxm55Digital Object Identifier
- Title
-
Anomaly Detection of Parasitic Plankton in Brebes Eco-Waters Using Vision-Based Autoencoder AIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Gunawan Gunawan, Wresti Andriani, Sesilia Putri Maryanto, Restu Abi MustaqiimList of authors in order
- Landing page
-
https://doi.org/10.35335/75mwxm55Publisher landing page
- PDF URL
-
https://pub.iocscience.org/index.php/Vertex/article/download/117/101Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://pub.iocscience.org/index.php/Vertex/article/download/117/101Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414822220 |
|---|---|
| doi | https://doi.org/10.35335/75mwxm55 |
| ids.doi | https://doi.org/10.35335/75mwxm55 |
| ids.openalex | https://openalex.org/W4414822220 |
| fwci | 0.0 |
| type | article |
| title | Anomaly Detection of Parasitic Plankton in Brebes Eco-Waters Using Vision-Based Autoencoder AI |
| biblio.issue | 2 |
| biblio.volume | 14 |
| biblio.last_page | 95 |
| biblio.first_page | 79 |
| topics[0].id | https://openalex.org/T12388 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.6930999755859375 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Identification and Quantification in Food |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.35335/75mwxm55 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387291680 |
| locations[0].source.issn | 2089-385X, 2829-6761 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-385X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Vertex |
| locations[0].source.host_organization | https://openalex.org/P4310312730 |
| locations[0].source.host_organization_name | Institute of Computer Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312730 |
| locations[0].source.host_organization_lineage_names | Institute of Computer Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pub.iocscience.org/index.php/Vertex/article/download/117/101 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Vertex |
| locations[0].landing_page_url | https://doi.org/10.35335/75mwxm55 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5110950650 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Gunawan Gunawan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gunawan Gunawan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013718360 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wresti Andriani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wresti Andriani |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5119846095 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sesilia Putri Maryanto |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sesilia Putri Maryanto |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119846096 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Restu Abi Mustaqiim |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Restu Abi Mustaqiim |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pub.iocscience.org/index.php/Vertex/article/download/117/101 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Anomaly Detection of Parasitic Plankton in Brebes Eco-Waters Using Vision-Based Autoencoder AI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12388 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.6930999755859375 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Identification and Quantification in Food |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.35335/75mwxm55 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387291680 |
| best_oa_location.source.issn | 2089-385X, 2829-6761 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-385X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Vertex |
| best_oa_location.source.host_organization | https://openalex.org/P4310312730 |
| best_oa_location.source.host_organization_name | Institute of Computer Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312730 |
| best_oa_location.source.host_organization_lineage_names | Institute of Computer Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pub.iocscience.org/index.php/Vertex/article/download/117/101 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Vertex |
| best_oa_location.landing_page_url | https://doi.org/10.35335/75mwxm55 |
| primary_location.id | doi:10.35335/75mwxm55 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387291680 |
| primary_location.source.issn | 2089-385X, 2829-6761 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-385X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Vertex |
| primary_location.source.host_organization | https://openalex.org/P4310312730 |
| primary_location.source.host_organization_name | Institute of Computer Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312730 |
| primary_location.source.host_organization_lineage_names | Institute of Computer Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pub.iocscience.org/index.php/Vertex/article/download/117/101 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Vertex |
| primary_location.landing_page_url | https://doi.org/10.35335/75mwxm55 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 111, 132, 177, 196, 205 |
| abstract_inverted_index.By | 185 |
| abstract_inverted_index.an | 20, 44, 128, 137, 152 |
| abstract_inverted_index.as | 117, 176 |
| abstract_inverted_index.by | 121 |
| abstract_inverted_index.in | 32, 96, 144 |
| abstract_inverted_index.is | 41 |
| abstract_inverted_index.of | 3, 35, 49, 130, 134, 139, 156, 172 |
| abstract_inverted_index.on | 6, 55 |
| abstract_inverted_index.to | 25, 42 |
| abstract_inverted_index.AUC | 138 |
| abstract_inverted_index.The | 0, 38, 59, 125 |
| abstract_inverted_index.aim | 40 |
| abstract_inverted_index.and | 28, 76, 92, 119, 136, 148, 203 |
| abstract_inverted_index.for | 13, 64, 73, 82, 181, 199, 207 |
| abstract_inverted_index.per | 159 |
| abstract_inverted_index.the | 33, 161, 170, 173 |
| abstract_inverted_index.0.37 | 157 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.With | 151 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.high | 142 |
| abstract_inverted_index.near | 164 |
| abstract_inverted_index.pond | 94 |
| abstract_inverted_index.that | 109 |
| abstract_inverted_index.this | 193 |
| abstract_inverted_index.time | 155 |
| abstract_inverted_index.were | 87, 115 |
| abstract_inverted_index.with | 189 |
| abstract_inverted_index.(PCA) | 72 |
| abstract_inverted_index.0.94, | 140 |
| abstract_inverted_index.Java, | 99 |
| abstract_inverted_index.These | 167 |
| abstract_inverted_index.data. | 58 |
| abstract_inverted_index.field | 106 |
| abstract_inverted_index.sites | 95 |
| abstract_inverted_index.study | 18 |
| abstract_inverted_index.tools | 12 |
| abstract_inverted_index.under | 104 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.85.3%, | 135 |
| abstract_inverted_index.86.1%, | 131 |
| abstract_inverted_index.Images | 108 |
| abstract_inverted_index.Vector | 79 |
| abstract_inverted_index.expert | 191 |
| abstract_inverted_index.future | 208 |
| abstract_inverted_index.image, | 160 |
| abstract_inverted_index.images | 86 |
| abstract_inverted_index.impact | 2 |
| abstract_inverted_index.marine | 15, 122, 200 |
| abstract_inverted_index.method | 175 |
| abstract_inverted_index.normal | 66, 147 |
| abstract_inverted_index.offers | 195 |
| abstract_inverted_index.stress | 5 |
| abstract_inverted_index.system | 47, 126, 162 |
| abstract_inverted_index.visual | 51 |
| abstract_inverted_index.waters | 34 |
| abstract_inverted_index.Brebes, | 36, 97 |
| abstract_inverted_index.Central | 98 |
| abstract_inverted_index.Monthly | 84 |
| abstract_inverted_index.Support | 78 |
| abstract_inverted_index.anomaly | 22, 57 |
| abstract_inverted_index.aquatic | 182 |
| abstract_inverted_index.average | 153 |
| abstract_inverted_index.between | 146 |
| abstract_inverted_index.biology | 123 |
| abstract_inverted_index.capable | 48 |
| abstract_inverted_index.coastal | 7 |
| abstract_inverted_index.confirm | 169 |
| abstract_inverted_index.develop | 43 |
| abstract_inverted_index.digital | 102 |
| abstract_inverted_index.dynamic | 112 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.flagged | 116 |
| abstract_inverted_index.images, | 68 |
| abstract_inverted_index.labeled | 56 |
| abstract_inverted_index.primary | 39 |
| abstract_inverted_index.relying | 54 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.seconds | 158 |
| abstract_inverted_index.without | 53 |
| abstract_inverted_index.(OC-SVM) | 81 |
| abstract_inverted_index.AI-based | 187 |
| abstract_inverted_index.Analysis | 71 |
| abstract_inverted_index.F1-score | 129 |
| abstract_inverted_index.Machines | 80 |
| abstract_inverted_index.abnormal | 30 |
| abstract_inverted_index.achieved | 127 |
| abstract_inverted_index.adaptive | 209 |
| abstract_inverted_index.approach | 198 |
| abstract_inverted_index.exceeded | 110 |
| abstract_inverted_index.experts. | 124 |
| abstract_inverted_index.identify | 26 |
| abstract_inverted_index.mangrove | 91 |
| abstract_inverted_index.obtained | 88 |
| abstract_inverted_index.plankton | 31, 67 |
| abstract_inverted_index.portable | 101 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.proposes | 19 |
| abstract_inverted_index.research | 60, 194 |
| abstract_inverted_index.scalable | 11, 197 |
| abstract_inverted_index.selected | 90 |
| abstract_inverted_index.solution | 180 |
| abstract_inverted_index.supports | 163 |
| abstract_inverted_index.systems. | 212 |
| abstract_inverted_index.Component | 70 |
| abstract_inverted_index.One-Class | 77 |
| abstract_inverted_index.Principal | 69 |
| abstract_inverted_index.anomalies | 52 |
| abstract_inverted_index.anomalous | 118, 149 |
| abstract_inverted_index.detecting | 50 |
| abstract_inverted_index.detection | 23, 188 |
| abstract_inverted_index.ecosystem | 183 |
| abstract_inverted_index.framework | 24 |
| abstract_inverted_index.inference | 154 |
| abstract_inverted_index.parasitic | 27 |
| abstract_inverted_index.plankton. | 150 |
| abstract_inverted_index.potential | 171 |
| abstract_inverted_index.precision | 133 |
| abstract_inverted_index.real-time | 165 |
| abstract_inverted_index.reliable, | 10 |
| abstract_inverted_index.threshold | 114 |
| abstract_inverted_index.validated | 120 |
| abstract_inverted_index.Indonesia. | 37 |
| abstract_inverted_index.assessment | 202 |
| abstract_inverted_index.ecological | 190 |
| abstract_inverted_index.ecosystems | 8 |
| abstract_inverted_index.escalating | 1 |
| abstract_inverted_index.foundation | 206 |
| abstract_inverted_index.integrates | 61 |
| abstract_inverted_index.microscopy | 103 |
| abstract_inverted_index.monitoring | 14, 211 |
| abstract_inverted_index.aquaculture | 93 |
| abstract_inverted_index.conditions. | 107 |
| abstract_inverted_index.establishes | 204 |
| abstract_inverted_index.extraction, | 75 |
| abstract_inverted_index.integrating | 186 |
| abstract_inverted_index.microscopic | 85 |
| abstract_inverted_index.monitoring. | 166 |
| abstract_inverted_index.validation, | 192 |
| abstract_inverted_index.autoencoders | 63 |
| abstract_inverted_index.biodiversity | 201 |
| abstract_inverted_index.low-latency, | 178 |
| abstract_inverted_index.necessitates | 9 |
| abstract_inverted_index.standardized | 105 |
| abstract_inverted_index.unsupervised | 21 |
| abstract_inverted_index.vision-based | 46 |
| abstract_inverted_index.biodiversity. | 16 |
| abstract_inverted_index.convolutional | 62 |
| abstract_inverted_index.demonstrating | 141 |
| abstract_inverted_index.effectiveness | 143 |
| abstract_inverted_index.environmental | 4, 210 |
| abstract_inverted_index.surveillance. | 184 |
| abstract_inverted_index.distinguishing | 145 |
| abstract_inverted_index.interpretable, | 45 |
| abstract_inverted_index.reconstructing | 65 |
| abstract_inverted_index.reconstruction | 113 |
| abstract_inverted_index.classification. | 83 |
| abstract_inverted_index.morphologically | 29 |
| abstract_inverted_index.field-deployable | 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.4367015 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |