Answer Summarization for Technical Queries: Benchmark and New Approach Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2209.10868
Prior studies have demonstrated that approaches to generate an answer summary for a given technical query in Software Question and Answer (SQA) sites are desired. We find that existing approaches are assessed solely through user studies. There is a need for a benchmark with ground truth summaries to complement assessment through user studies. Unfortunately, such a benchmark is non-existent for answer summarization for technical queries from SQA sites. To fill the gap, we manually construct a high-quality benchmark to enable automatic evaluation of answer summarization for technical queries for SQA sites. Using the benchmark, we comprehensively evaluate the performance of existing approaches and find that there is still a big room for improvement. Motivated by the results, we propose a new approach TechSumBot with three key modules:1) Usefulness Ranking module, 2) Centrality Estimation module, and 3) Redundancy Removal module. We evaluate TechSumBot in both automatic (i.e., using our benchmark) and manual (i.e., via a user study) manners. The results from both evaluations consistently demonstrate that TechSumBot outperforms the best performing baseline approaches from both SE and NLP domains by a large margin, i.e., 10.83%-14.90%, 32.75%-36.59%, and 12.61%-17.54%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L on automatic evaluation, and 5.79%-9.23% and 17.03%-17.68%, in terms of average usefulness and diversity score on human evaluation. This highlights that the automatic evaluation of our benchmark can uncover findings similar to the ones found through user studies. More importantly, automatic evaluation has a much lower cost, especially when it is used to assess a new approach. Additionally, we also conducted an ablation study, which demonstrates that each module in TechSumBot contributes to boosting the overall performance of TechSumBot.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2209.10868
- https://arxiv.org/pdf/2209.10868
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4296972837
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4296972837Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2209.10868Digital Object Identifier
- Title
-
Answer Summarization for Technical Queries: Benchmark and New ApproachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-22Full publication date if available
- Authors
-
Yang Chengran, Bowen Xu, Ferdian Thung, Yucen Shi, Ting Zhang, Zhou Yang, Xin Zhou, Jieke Shi, Junda He, DongGyun Han, David LoList of authors in order
- Landing page
-
https://arxiv.org/abs/2209.10868Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2209.10868Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2209.10868Direct OA link when available
- Concepts
-
Benchmark (surveying), Automatic summarization, Computer science, Ranking (information retrieval), Information retrieval, Ground truth, Sophistication, Baseline (sea), Data mining, Machine learning, Artificial intelligence, Natural language processing, Social science, Geography, Geodesy, Oceanography, Geology, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4296972837 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2209.10868 |
| ids.doi | https://doi.org/10.48550/arxiv.2209.10868 |
| ids.openalex | https://openalex.org/W4296972837 |
| fwci | |
| type | preprint |
| title | Answer Summarization for Technical Queries: Benchmark and New Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T10430 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Software Engineering Techniques and Practices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8562095165252686 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C170858558 |
| concepts[1].level | 2 |
| concepts[1].score | 0.849196195602417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[1].display_name | Automatic summarization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7983033657073975 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C189430467 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5845046639442444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[3].display_name | Ranking (information retrieval) |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5509997606277466 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5278018712997437 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C168725872 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5178185105323792 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q991663 |
| concepts[6].display_name | Sophistication |
| concepts[7].id | https://openalex.org/C12725497 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46792128682136536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[7].display_name | Baseline (sea) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4215841591358185 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37552911043167114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3591090738773346 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3293382525444031 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C36289849 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[12].display_name | Social science |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C111368507 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[15].display_name | Oceanography |
| concepts[16].id | https://openalex.org/C127313418 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[16].display_name | Geology |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8562095165252686 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/automatic-summarization |
| keywords[1].score | 0.849196195602417 |
| keywords[1].display_name | Automatic summarization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7983033657073975 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/ranking |
| keywords[3].score | 0.5845046639442444 |
| keywords[3].display_name | Ranking (information retrieval) |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.5509997606277466 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.5278018712997437 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/sophistication |
| keywords[6].score | 0.5178185105323792 |
| keywords[6].display_name | Sophistication |
| keywords[7].id | https://openalex.org/keywords/baseline |
| keywords[7].score | 0.46792128682136536 |
| keywords[7].display_name | Baseline (sea) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4215841591358185 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.37552911043167114 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3591090738773346 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/natural-language-processing |
| keywords[11].score | 0.3293382525444031 |
| keywords[11].display_name | Natural language processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2209.10868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2209.10868 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2209.10868 |
| locations[1].id | doi:10.48550/arxiv.2209.10868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2209.10868 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021950094 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yang Chengran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengran, Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008013136 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1006-8493 |
| authorships[1].author.display_name | Bowen Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Bowen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034736998 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5566-3819 |
| authorships[2].author.display_name | Ferdian Thung |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thung, Ferdian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5033093496 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5717-4090 |
| authorships[3].author.display_name | Yucen Shi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shi, Yucen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100458354 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-8621-3598 |
| authorships[4].author.display_name | Ting Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Ting |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100354738 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8788-0383 |
| authorships[5].author.display_name | Zhou Yang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yang, Zhou |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100424233 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4558-0622 |
| authorships[6].author.display_name | Xin Zhou |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhou, Xin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5002667771 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0799-5018 |
| authorships[7].author.display_name | Jieke Shi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shi, Jieke |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5103075577 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3370-8585 |
| authorships[8].author.display_name | Junda He |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | He, Junda |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5054365831 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-8599-2197 |
| authorships[9].author.display_name | DongGyun Han |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Han, DongGyun |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5081036622 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4367-7201 |
| authorships[10].author.display_name | David Lo |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Lo, David |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2209.10868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Answer Summarization for Technical Queries: Benchmark and New Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2366403280, https://openalex.org/W1495108544, https://openalex.org/W2091301346, https://openalex.org/W3148229873, https://openalex.org/W2150160875, https://openalex.org/W4242223894, https://openalex.org/W402673672, https://openalex.org/W3046127589, https://openalex.org/W3093409497, https://openalex.org/W4287704324 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2209.10868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2209.10868 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2209.10868 |
| primary_location.id | pmh:oai:arXiv.org:2209.10868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2209.10868 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2209.10868 |
| publication_date | 2022-09-22 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 38, 41, 55, 75, 108, 119, 153, 179, 237, 248 |
| abstract_inverted_index.2) | 130 |
| abstract_inverted_index.3) | 135 |
| abstract_inverted_index.SE | 174 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.We | 25, 139 |
| abstract_inverted_index.an | 8, 255 |
| abstract_inverted_index.by | 114, 178 |
| abstract_inverted_index.in | 16, 142, 187, 201, 263 |
| abstract_inverted_index.is | 37, 57, 106, 244 |
| abstract_inverted_index.it | 243 |
| abstract_inverted_index.of | 82, 99, 189, 203, 218, 271 |
| abstract_inverted_index.on | 194, 209 |
| abstract_inverted_index.to | 6, 47, 78, 225, 246, 266 |
| abstract_inverted_index.we | 72, 94, 117, 252 |
| abstract_inverted_index.NLP | 176 |
| abstract_inverted_index.SQA | 66, 89 |
| abstract_inverted_index.The | 157 |
| abstract_inverted_index.and | 19, 102, 134, 149, 175, 185, 192, 197, 199, 206 |
| abstract_inverted_index.are | 23, 30 |
| abstract_inverted_index.big | 109 |
| abstract_inverted_index.can | 221 |
| abstract_inverted_index.for | 11, 40, 59, 62, 85, 88, 111 |
| abstract_inverted_index.has | 236 |
| abstract_inverted_index.key | 125 |
| abstract_inverted_index.new | 120, 249 |
| abstract_inverted_index.our | 147, 219 |
| abstract_inverted_index.the | 70, 92, 97, 115, 167, 215, 226, 268 |
| abstract_inverted_index.via | 152 |
| abstract_inverted_index.More | 232 |
| abstract_inverted_index.This | 212 |
| abstract_inverted_index.also | 253 |
| abstract_inverted_index.best | 168 |
| abstract_inverted_index.both | 143, 160, 173 |
| abstract_inverted_index.each | 261 |
| abstract_inverted_index.fill | 69 |
| abstract_inverted_index.find | 26, 103 |
| abstract_inverted_index.from | 65, 159, 172 |
| abstract_inverted_index.gap, | 71 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.much | 238 |
| abstract_inverted_index.need | 39 |
| abstract_inverted_index.ones | 227 |
| abstract_inverted_index.room | 110 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.that | 4, 27, 104, 164, 214, 260 |
| abstract_inverted_index.used | 245 |
| abstract_inverted_index.user | 34, 51, 154, 230 |
| abstract_inverted_index.when | 242 |
| abstract_inverted_index.with | 43, 123 |
| abstract_inverted_index.(SQA) | 21 |
| abstract_inverted_index.Prior | 0 |
| abstract_inverted_index.There | 36 |
| abstract_inverted_index.Using | 91 |
| abstract_inverted_index.cost, | 240 |
| abstract_inverted_index.found | 228 |
| abstract_inverted_index.given | 13 |
| abstract_inverted_index.human | 210 |
| abstract_inverted_index.i.e., | 182 |
| abstract_inverted_index.large | 180 |
| abstract_inverted_index.lower | 239 |
| abstract_inverted_index.query | 15 |
| abstract_inverted_index.score | 208 |
| abstract_inverted_index.sites | 22 |
| abstract_inverted_index.still | 107 |
| abstract_inverted_index.terms | 188, 202 |
| abstract_inverted_index.there | 105 |
| abstract_inverted_index.three | 124 |
| abstract_inverted_index.truth | 45 |
| abstract_inverted_index.using | 146 |
| abstract_inverted_index.which | 258 |
| abstract_inverted_index.(i.e., | 145, 151 |
| abstract_inverted_index.Answer | 20 |
| abstract_inverted_index.answer | 9, 60, 83 |
| abstract_inverted_index.assess | 247 |
| abstract_inverted_index.enable | 79 |
| abstract_inverted_index.ground | 44 |
| abstract_inverted_index.manual | 150 |
| abstract_inverted_index.module | 262 |
| abstract_inverted_index.sites. | 67, 90 |
| abstract_inverted_index.solely | 32 |
| abstract_inverted_index.study) | 155 |
| abstract_inverted_index.study, | 257 |
| abstract_inverted_index.ROUGE-L | 193 |
| abstract_inverted_index.Ranking | 128 |
| abstract_inverted_index.Removal | 137 |
| abstract_inverted_index.average | 204 |
| abstract_inverted_index.domains | 177 |
| abstract_inverted_index.margin, | 181 |
| abstract_inverted_index.module, | 129, 133 |
| abstract_inverted_index.module. | 138 |
| abstract_inverted_index.overall | 269 |
| abstract_inverted_index.propose | 118 |
| abstract_inverted_index.queries | 64, 87 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.similar | 224 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.summary | 10 |
| abstract_inverted_index.through | 33, 50, 229 |
| abstract_inverted_index.uncover | 222 |
| abstract_inverted_index.Question | 18 |
| abstract_inverted_index.ROUGE-1, | 190 |
| abstract_inverted_index.ROUGE-2, | 191 |
| abstract_inverted_index.Software | 17 |
| abstract_inverted_index.ablation | 256 |
| abstract_inverted_index.approach | 121 |
| abstract_inverted_index.assessed | 31 |
| abstract_inverted_index.baseline | 170 |
| abstract_inverted_index.boosting | 267 |
| abstract_inverted_index.desired. | 24 |
| abstract_inverted_index.evaluate | 96, 140 |
| abstract_inverted_index.existing | 28, 100 |
| abstract_inverted_index.findings | 223 |
| abstract_inverted_index.generate | 7 |
| abstract_inverted_index.manners. | 156 |
| abstract_inverted_index.manually | 73 |
| abstract_inverted_index.results, | 116 |
| abstract_inverted_index.studies. | 35, 52, 231 |
| abstract_inverted_index.Motivated | 113 |
| abstract_inverted_index.approach. | 250 |
| abstract_inverted_index.automatic | 80, 144, 195, 216, 234 |
| abstract_inverted_index.benchmark | 42, 56, 77, 220 |
| abstract_inverted_index.conducted | 254 |
| abstract_inverted_index.construct | 74 |
| abstract_inverted_index.diversity | 207 |
| abstract_inverted_index.summaries | 46 |
| abstract_inverted_index.technical | 14, 63, 86 |
| abstract_inverted_index.Centrality | 131 |
| abstract_inverted_index.Estimation | 132 |
| abstract_inverted_index.Redundancy | 136 |
| abstract_inverted_index.TechSumBot | 122, 141, 165, 264 |
| abstract_inverted_index.Usefulness | 127 |
| abstract_inverted_index.approaches | 5, 29, 101, 171 |
| abstract_inverted_index.assessment | 49 |
| abstract_inverted_index.benchmark) | 148 |
| abstract_inverted_index.benchmark, | 93 |
| abstract_inverted_index.complement | 48 |
| abstract_inverted_index.especially | 241 |
| abstract_inverted_index.evaluation | 81, 217, 235 |
| abstract_inverted_index.highlights | 213 |
| abstract_inverted_index.modules:1) | 126 |
| abstract_inverted_index.performing | 169 |
| abstract_inverted_index.usefulness | 205 |
| abstract_inverted_index.5.79%-9.23% | 198 |
| abstract_inverted_index.TechSumBot. | 272 |
| abstract_inverted_index.contributes | 265 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.evaluation, | 196 |
| abstract_inverted_index.evaluation. | 211 |
| abstract_inverted_index.evaluations | 161 |
| abstract_inverted_index.outperforms | 166 |
| abstract_inverted_index.performance | 98, 270 |
| abstract_inverted_index.consistently | 162 |
| abstract_inverted_index.demonstrated | 3 |
| abstract_inverted_index.demonstrates | 259 |
| abstract_inverted_index.high-quality | 76 |
| abstract_inverted_index.importantly, | 233 |
| abstract_inverted_index.improvement. | 112 |
| abstract_inverted_index.non-existent | 58 |
| abstract_inverted_index.Additionally, | 251 |
| abstract_inverted_index.summarization | 61, 84 |
| abstract_inverted_index.10.83%-14.90%, | 183 |
| abstract_inverted_index.12.61%-17.54%, | 186 |
| abstract_inverted_index.17.03%-17.68%, | 200 |
| abstract_inverted_index.32.75%-36.59%, | 184 |
| abstract_inverted_index.Unfortunately, | 53 |
| abstract_inverted_index.comprehensively | 95 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |