Antenna Array Pattern with Sidelobe Level Control using Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.13052/2025.aces.j.400506
Motivated by the demonstrated success of artificial intelligence (AI) in wireless communications systems, this paper proposes a deep learning-based approach for generating a desired radiation pattern with sidelobe level (SLL) control in active electronically scanned array (AESA) antennas. Recent works in this direction are mostly limited to generating radiation patterns with only beam scanning capability, inhibiting their wide-scale applicability. In this work, we propose a unified deep neural network (DNN) model that enable simultaneous control over both beam scanning angles and SLLs across a range of operating scenarios. To accomplish this task, the DNN model efficiently predicts the phase and amplitude of each array element. To learn the DNN model’s parameters, we construct a training dataset comprising amplitude values and phases as labeled outputs and corresponding 181-point radiation patterns as input features. The training and validation process of the proposed DNN model reveals high accuracy in terms of R2 score and mean square error (MSE). For prediction, the desired radiation pattern consisting of 181 points is fed to the trained DNN model to yield optimized weights of antenna elements. The numerical results on a 1×8 linear phase antenna array, using an assortment of beam scanning angles and SLLs, demonstrate the effectiveness of the proposed model. The numerical results presented in MATLAB and CST simulators are validated by measurements on a 1×8 microstrip prototype array.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.13052/2025.aces.j.400506
- https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413934054
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413934054Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13052/2025.aces.j.400506Digital Object Identifier
- Title
-
Antenna Array Pattern with Sidelobe Level Control using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Mohammed Abdullah, Alam Zaib, Shafqat Ullah Khan, Shoaib Azmat, Shahid Khattak, Benjamin D. Braaten, Irfan UllahList of authors in order
- Landing page
-
https://doi.org/10.13052/2025.aces.j.400506Publisher landing page
- PDF URL
-
https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435Direct OA link when available
- Concepts
-
Antenna (radio), Antenna array, Artificial intelligence, Computer science, Control (management), TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413934054 |
|---|---|
| doi | https://doi.org/10.13052/2025.aces.j.400506 |
| ids.doi | https://doi.org/10.13052/2025.aces.j.400506 |
| ids.openalex | https://openalex.org/W4413934054 |
| fwci | 0.0 |
| type | article |
| title | Antenna Array Pattern with Sidelobe Level Control using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11946 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Antenna Design and Optimization |
| topics[1].id | https://openalex.org/T12450 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9907000064849854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3103 |
| topics[1].subfield.display_name | Astronomy and Astrophysics |
| topics[1].display_name | Radio Astronomy Observations and Technology |
| topics[2].id | https://openalex.org/T10069 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9807999730110168 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Antenna Design and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C21822782 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5403419137001038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q131214 |
| concepts[0].display_name | Antenna (radio) |
| concepts[1].id | https://openalex.org/C62191587 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4817383587360382 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4771249 |
| concepts[1].display_name | Antenna array |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4684705138206482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4509253203868866 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2775924081 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4330854117870331 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[4].display_name | Control (management) |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.28295135498046875 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/antenna |
| keywords[0].score | 0.5403419137001038 |
| keywords[0].display_name | Antenna (radio) |
| keywords[1].id | https://openalex.org/keywords/antenna-array |
| keywords[1].score | 0.4817383587360382 |
| keywords[1].display_name | Antenna array |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4684705138206482 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4509253203868866 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/control |
| keywords[4].score | 0.4330854117870331 |
| keywords[4].display_name | Control (management) |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.28295135498046875 |
| keywords[5].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.13052/2025.aces.j.400506 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198984855 |
| locations[0].source.issn | 1054-4887, 1943-5711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1054-4887 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Applied Computational Electromagnetics Society Journal (ACES) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Computational Electromagnetics Society Journal (ACES) |
| locations[0].landing_page_url | https://doi.org/10.13052/2025.aces.j.400506 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5107808817 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mohammed Abdullah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad A. Abdullah |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078057594 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1381-2799 |
| authorships[1].author.display_name | Alam Zaib |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alam Zaib |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103156316 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1969-1289 |
| authorships[2].author.display_name | Shafqat Ullah Khan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shafqat U. Khan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032446967 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0954-8334 |
| authorships[3].author.display_name | Shoaib Azmat |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shoaib Azmat |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073298876 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8278-101X |
| authorships[4].author.display_name | Shahid Khattak |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shahid Khattak |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5071729990 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2575-7275 |
| authorships[5].author.display_name | Benjamin D. Braaten |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Benjamin D. Braaten |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101560265 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8909-2447 |
| authorships[6].author.display_name | Irfan Ullah |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Irfan Ullah |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Antenna Array Pattern with Sidelobe Level Control using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11946 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Antenna Design and Optimization |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2400319883, https://openalex.org/W3110694720, https://openalex.org/W2036271115, https://openalex.org/W2585623765 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13052/2025.aces.j.400506 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198984855 |
| best_oa_location.source.issn | 1054-4887, 1943-5711 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1054-4887 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The Applied Computational Electromagnetics Society Journal (ACES) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Computational Electromagnetics Society Journal (ACES) |
| best_oa_location.landing_page_url | https://doi.org/10.13052/2025.aces.j.400506 |
| primary_location.id | doi:10.13052/2025.aces.j.400506 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198984855 |
| primary_location.source.issn | 1054-4887, 1943-5711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1054-4887 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Applied Computational Electromagnetics Society Journal (ACES) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://journals.riverpublishers.com/index.php/ACES/article/download/27505/22435 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Computational Electromagnetics Society Journal (ACES) |
| primary_location.landing_page_url | https://doi.org/10.13052/2025.aces.j.400506 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 22, 64, 83, 113, 183, 219 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.R2 | 148 |
| abstract_inverted_index.To | 88, 105 |
| abstract_inverted_index.an | 190 |
| abstract_inverted_index.as | 121, 129 |
| abstract_inverted_index.by | 1, 216 |
| abstract_inverted_index.in | 9, 31, 40, 145, 209 |
| abstract_inverted_index.is | 165 |
| abstract_inverted_index.of | 5, 85, 101, 137, 147, 162, 176, 192, 201 |
| abstract_inverted_index.on | 182, 218 |
| abstract_inverted_index.to | 46, 167, 172 |
| abstract_inverted_index.we | 62, 111 |
| abstract_inverted_index.181 | 163 |
| abstract_inverted_index.CST | 212 |
| abstract_inverted_index.DNN | 93, 108, 140, 170 |
| abstract_inverted_index.For | 155 |
| abstract_inverted_index.The | 132, 179, 205 |
| abstract_inverted_index.and | 80, 99, 119, 124, 134, 150, 196, 211 |
| abstract_inverted_index.are | 43, 214 |
| abstract_inverted_index.fed | 166 |
| abstract_inverted_index.for | 20 |
| abstract_inverted_index.the | 2, 92, 97, 107, 138, 157, 168, 199, 202 |
| abstract_inverted_index.(AI) | 8 |
| abstract_inverted_index.1×8 | 184, 220 |
| abstract_inverted_index.SLLs | 81 |
| abstract_inverted_index.beam | 52, 77, 193 |
| abstract_inverted_index.both | 76 |
| abstract_inverted_index.deep | 17, 66 |
| abstract_inverted_index.each | 102 |
| abstract_inverted_index.high | 143 |
| abstract_inverted_index.mean | 151 |
| abstract_inverted_index.only | 51 |
| abstract_inverted_index.over | 75 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.this | 13, 41, 60, 90 |
| abstract_inverted_index.with | 26, 50 |
| abstract_inverted_index.(DNN) | 69 |
| abstract_inverted_index.(SLL) | 29 |
| abstract_inverted_index.SLLs, | 197 |
| abstract_inverted_index.array | 35, 103 |
| abstract_inverted_index.error | 153 |
| abstract_inverted_index.input | 130 |
| abstract_inverted_index.learn | 106 |
| abstract_inverted_index.level | 28 |
| abstract_inverted_index.model | 70, 94, 141, 171 |
| abstract_inverted_index.paper | 14 |
| abstract_inverted_index.phase | 98, 186 |
| abstract_inverted_index.range | 84 |
| abstract_inverted_index.score | 149 |
| abstract_inverted_index.task, | 91 |
| abstract_inverted_index.terms | 146 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.using | 189 |
| abstract_inverted_index.work, | 61 |
| abstract_inverted_index.works | 39 |
| abstract_inverted_index.yield | 173 |
| abstract_inverted_index.(AESA) | 36 |
| abstract_inverted_index.(MSE). | 154 |
| abstract_inverted_index.MATLAB | 210 |
| abstract_inverted_index.Recent | 38 |
| abstract_inverted_index.across | 82 |
| abstract_inverted_index.active | 32 |
| abstract_inverted_index.angles | 79, 195 |
| abstract_inverted_index.array, | 188 |
| abstract_inverted_index.array. | 223 |
| abstract_inverted_index.enable | 72 |
| abstract_inverted_index.linear | 185 |
| abstract_inverted_index.model. | 204 |
| abstract_inverted_index.mostly | 44 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.phases | 120 |
| abstract_inverted_index.points | 164 |
| abstract_inverted_index.square | 152 |
| abstract_inverted_index.values | 118 |
| abstract_inverted_index.antenna | 177, 187 |
| abstract_inverted_index.control | 30, 74 |
| abstract_inverted_index.dataset | 115 |
| abstract_inverted_index.desired | 23, 158 |
| abstract_inverted_index.labeled | 122 |
| abstract_inverted_index.limited | 45 |
| abstract_inverted_index.network | 68 |
| abstract_inverted_index.outputs | 123 |
| abstract_inverted_index.pattern | 25, 160 |
| abstract_inverted_index.process | 136 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.results | 181, 207 |
| abstract_inverted_index.reveals | 142 |
| abstract_inverted_index.scanned | 34 |
| abstract_inverted_index.success | 4 |
| abstract_inverted_index.trained | 169 |
| abstract_inverted_index.unified | 65 |
| abstract_inverted_index.weights | 175 |
| abstract_inverted_index.accuracy | 144 |
| abstract_inverted_index.approach | 19 |
| abstract_inverted_index.element. | 104 |
| abstract_inverted_index.patterns | 49, 128 |
| abstract_inverted_index.predicts | 96 |
| abstract_inverted_index.proposed | 139, 203 |
| abstract_inverted_index.proposes | 15 |
| abstract_inverted_index.scanning | 53, 78, 194 |
| abstract_inverted_index.sidelobe | 27 |
| abstract_inverted_index.systems, | 12 |
| abstract_inverted_index.training | 114, 133 |
| abstract_inverted_index.wireless | 10 |
| abstract_inverted_index.181-point | 126 |
| abstract_inverted_index.Motivated | 0 |
| abstract_inverted_index.amplitude | 100, 117 |
| abstract_inverted_index.antennas. | 37 |
| abstract_inverted_index.construct | 112 |
| abstract_inverted_index.direction | 42 |
| abstract_inverted_index.elements. | 178 |
| abstract_inverted_index.features. | 131 |
| abstract_inverted_index.model’s | 109 |
| abstract_inverted_index.numerical | 180, 206 |
| abstract_inverted_index.operating | 86 |
| abstract_inverted_index.optimized | 174 |
| abstract_inverted_index.presented | 208 |
| abstract_inverted_index.prototype | 222 |
| abstract_inverted_index.radiation | 24, 48, 127, 159 |
| abstract_inverted_index.validated | 215 |
| abstract_inverted_index.accomplish | 89 |
| abstract_inverted_index.artificial | 6 |
| abstract_inverted_index.assortment | 191 |
| abstract_inverted_index.comprising | 116 |
| abstract_inverted_index.consisting | 161 |
| abstract_inverted_index.generating | 21, 47 |
| abstract_inverted_index.inhibiting | 55 |
| abstract_inverted_index.microstrip | 221 |
| abstract_inverted_index.scenarios. | 87 |
| abstract_inverted_index.simulators | 213 |
| abstract_inverted_index.validation | 135 |
| abstract_inverted_index.wide-scale | 57 |
| abstract_inverted_index.capability, | 54 |
| abstract_inverted_index.demonstrate | 198 |
| abstract_inverted_index.efficiently | 95 |
| abstract_inverted_index.parameters, | 110 |
| abstract_inverted_index.prediction, | 156 |
| abstract_inverted_index.demonstrated | 3 |
| abstract_inverted_index.intelligence | 7 |
| abstract_inverted_index.measurements | 217 |
| abstract_inverted_index.simultaneous | 73 |
| abstract_inverted_index.corresponding | 125 |
| abstract_inverted_index.effectiveness | 200 |
| abstract_inverted_index.applicability. | 58 |
| abstract_inverted_index.communications | 11 |
| abstract_inverted_index.electronically | 33 |
| abstract_inverted_index.learning-based | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.2378877 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |