ANVIL: Anomaly-based Vulnerability Identification without Labelled Training Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.16028
Supervised-learning-based vulnerability detectors often fall short due to limited labelled training data. In contrast, Large Language Models (LLMs) like GPT-4 are trained on vast unlabelled code corpora, yet perform only marginally better than coin flips when directly prompted to detect vulnerabilities. In this paper, we reframe vulnerability detection as anomaly detection, based on the premise that vulnerable code is rare and thus anomalous relative to patterns learned by LLMs. We introduce ANVIL, which performs a masked code reconstruction task: the LLM reconstructs a masked line of code, and deviations from the original are scored as anomalies. We propose a hybrid anomaly score that combines exact match, cross-entropy loss, prediction confidence, and structural complexity. We evaluate our approach across multiple LLM families, scoring methods, and context sizes, and against vulnerabilities after the LLM's training cut-off. On the PrimeVul dataset, ANVIL outperforms state-of-the-art supervised detectors-LineVul, LineVD, and LLMAO-achieving up to 2x higher Top-3 accuracy, 75% better Normalized MFR, and a significant improvement on ROC-AUC. Finally, by integrating ANVIL with fuzzers, we uncover two previously unknown vulnerabilities, demonstrating the practical utility of anomaly-guided detection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.16028
- https://arxiv.org/pdf/2408.16028
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402706306
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402706306Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.16028Digital Object Identifier
- Title
-
ANVIL: Anomaly-based Vulnerability Identification without Labelled Training DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-28Full publication date if available
- Authors
-
Weizhou Wang, Eric Liu, Xiangyu Guo, David LieList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.16028Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.16028Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.16028Direct OA link when available
- Concepts
-
Identification (biology), Training (meteorology), Vulnerability (computing), Anomaly (physics), Anomaly detection, Computer science, Training set, Artificial intelligence, Computer security, Geography, Physics, Biology, Botany, Meteorology, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402706306 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.16028 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.16028 |
| ids.openalex | https://openalex.org/W4402706306 |
| fwci | |
| type | preprint |
| title | ANVIL: Anomaly-based Vulnerability Identification without Labelled Training Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9739999771118164 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12127 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9158999919891357 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Software System Performance and Reliability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6663914322853088 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6657049655914307 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C95713431 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6586004495620728 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q631425 |
| concepts[2].display_name | Vulnerability (computing) |
| concepts[3].id | https://openalex.org/C12997251 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6107690930366516 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[3].display_name | Anomaly (physics) |
| concepts[4].id | https://openalex.org/C739882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5237510204315186 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[4].display_name | Anomaly detection |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.47859641909599304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C51632099 |
| concepts[6].level | 2 |
| concepts[6].score | 0.413754940032959 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[6].display_name | Training set |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35134127736091614 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1732928454875946 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12626492977142334 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09287461638450623 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.06075778603553772 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C26873012 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[14].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.6663914322853088 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.6657049655914307 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/vulnerability |
| keywords[2].score | 0.6586004495620728 |
| keywords[2].display_name | Vulnerability (computing) |
| keywords[3].id | https://openalex.org/keywords/anomaly |
| keywords[3].score | 0.6107690930366516 |
| keywords[3].display_name | Anomaly (physics) |
| keywords[4].id | https://openalex.org/keywords/anomaly-detection |
| keywords[4].score | 0.5237510204315186 |
| keywords[4].display_name | Anomaly detection |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.47859641909599304 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/training-set |
| keywords[6].score | 0.413754940032959 |
| keywords[6].display_name | Training set |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.35134127736091614 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.1732928454875946 |
| keywords[8].display_name | Computer security |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.12626492977142334 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.09287461638450623 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.06075778603553772 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.16028 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.16028 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.16028 |
| locations[1].id | doi:10.48550/arxiv.2408.16028 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.16028 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009906998 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4309-9077 |
| authorships[0].author.display_name | Weizhou Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Weizhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043329779 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2286-0856 |
| authorships[1].author.display_name | Eric Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Eric |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102728945 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0727-5245 |
| authorships[2].author.display_name | Xiangyu Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Xiangyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049933072 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2000-6827 |
| authorships[3].author.display_name | David Lie |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lie, David |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.16028 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ANVIL: Anomaly-based Vulnerability Identification without Labelled Training Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2912112202, https://openalex.org/W2667207928, https://openalex.org/W4377864969, https://openalex.org/W2972971679 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.16028 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.16028 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.16028 |
| primary_location.id | pmh:oai:arXiv.org:2408.16028 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.16028 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.16028 |
| publication_date | 2024-08-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 74, 82, 98, 157 |
| abstract_inverted_index.2x | 148 |
| abstract_inverted_index.In | 12, 41 |
| abstract_inverted_index.On | 134 |
| abstract_inverted_index.We | 69, 96, 113 |
| abstract_inverted_index.as | 48, 94 |
| abstract_inverted_index.by | 67, 163 |
| abstract_inverted_index.is | 58 |
| abstract_inverted_index.of | 85, 178 |
| abstract_inverted_index.on | 22, 52, 160 |
| abstract_inverted_index.to | 7, 38, 64, 147 |
| abstract_inverted_index.up | 146 |
| abstract_inverted_index.we | 44, 168 |
| abstract_inverted_index.75% | 152 |
| abstract_inverted_index.LLM | 80, 119 |
| abstract_inverted_index.and | 60, 87, 110, 123, 126, 144, 156 |
| abstract_inverted_index.are | 20, 92 |
| abstract_inverted_index.due | 6 |
| abstract_inverted_index.our | 115 |
| abstract_inverted_index.the | 53, 79, 90, 130, 135, 175 |
| abstract_inverted_index.two | 170 |
| abstract_inverted_index.yet | 27 |
| abstract_inverted_index.MFR, | 155 |
| abstract_inverted_index.code | 25, 57, 76 |
| abstract_inverted_index.coin | 33 |
| abstract_inverted_index.fall | 4 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.like | 18 |
| abstract_inverted_index.line | 84 |
| abstract_inverted_index.only | 29 |
| abstract_inverted_index.rare | 59 |
| abstract_inverted_index.than | 32 |
| abstract_inverted_index.that | 55, 102 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.thus | 61 |
| abstract_inverted_index.vast | 23 |
| abstract_inverted_index.when | 35 |
| abstract_inverted_index.with | 166 |
| abstract_inverted_index.ANVIL | 138, 165 |
| abstract_inverted_index.GPT-4 | 19 |
| abstract_inverted_index.LLM's | 131 |
| abstract_inverted_index.LLMs. | 68 |
| abstract_inverted_index.Large | 14 |
| abstract_inverted_index.Top-3 | 150 |
| abstract_inverted_index.after | 129 |
| abstract_inverted_index.based | 51 |
| abstract_inverted_index.code, | 86 |
| abstract_inverted_index.data. | 11 |
| abstract_inverted_index.exact | 104 |
| abstract_inverted_index.flips | 34 |
| abstract_inverted_index.loss, | 107 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.score | 101 |
| abstract_inverted_index.short | 5 |
| abstract_inverted_index.task: | 78 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.(LLMs) | 17 |
| abstract_inverted_index.ANVIL, | 71 |
| abstract_inverted_index.Models | 16 |
| abstract_inverted_index.across | 117 |
| abstract_inverted_index.better | 31, 153 |
| abstract_inverted_index.detect | 39 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.hybrid | 99 |
| abstract_inverted_index.masked | 75, 83 |
| abstract_inverted_index.match, | 105 |
| abstract_inverted_index.paper, | 43 |
| abstract_inverted_index.scored | 93 |
| abstract_inverted_index.sizes, | 125 |
| abstract_inverted_index.LineVD, | 143 |
| abstract_inverted_index.against | 127 |
| abstract_inverted_index.anomaly | 49, 100 |
| abstract_inverted_index.context | 124 |
| abstract_inverted_index.learned | 66 |
| abstract_inverted_index.limited | 8 |
| abstract_inverted_index.perform | 28 |
| abstract_inverted_index.premise | 54 |
| abstract_inverted_index.propose | 97 |
| abstract_inverted_index.reframe | 45 |
| abstract_inverted_index.scoring | 121 |
| abstract_inverted_index.trained | 21 |
| abstract_inverted_index.uncover | 169 |
| abstract_inverted_index.unknown | 172 |
| abstract_inverted_index.utility | 177 |
| abstract_inverted_index.Finally, | 162 |
| abstract_inverted_index.Language | 15 |
| abstract_inverted_index.PrimeVul | 136 |
| abstract_inverted_index.ROC-AUC. | 161 |
| abstract_inverted_index.approach | 116 |
| abstract_inverted_index.combines | 103 |
| abstract_inverted_index.corpora, | 26 |
| abstract_inverted_index.cut-off. | 133 |
| abstract_inverted_index.dataset, | 137 |
| abstract_inverted_index.directly | 36 |
| abstract_inverted_index.evaluate | 114 |
| abstract_inverted_index.fuzzers, | 167 |
| abstract_inverted_index.labelled | 9 |
| abstract_inverted_index.methods, | 122 |
| abstract_inverted_index.multiple | 118 |
| abstract_inverted_index.original | 91 |
| abstract_inverted_index.patterns | 65 |
| abstract_inverted_index.performs | 73 |
| abstract_inverted_index.prompted | 37 |
| abstract_inverted_index.relative | 63 |
| abstract_inverted_index.training | 10, 132 |
| abstract_inverted_index.accuracy, | 151 |
| abstract_inverted_index.anomalous | 62 |
| abstract_inverted_index.contrast, | 13 |
| abstract_inverted_index.detection | 47 |
| abstract_inverted_index.detectors | 2 |
| abstract_inverted_index.families, | 120 |
| abstract_inverted_index.introduce | 70 |
| abstract_inverted_index.practical | 176 |
| abstract_inverted_index.Normalized | 154 |
| abstract_inverted_index.anomalies. | 95 |
| abstract_inverted_index.detection, | 50 |
| abstract_inverted_index.detection. | 180 |
| abstract_inverted_index.deviations | 88 |
| abstract_inverted_index.marginally | 30 |
| abstract_inverted_index.prediction | 108 |
| abstract_inverted_index.previously | 171 |
| abstract_inverted_index.structural | 111 |
| abstract_inverted_index.supervised | 141 |
| abstract_inverted_index.unlabelled | 24 |
| abstract_inverted_index.vulnerable | 56 |
| abstract_inverted_index.complexity. | 112 |
| abstract_inverted_index.confidence, | 109 |
| abstract_inverted_index.improvement | 159 |
| abstract_inverted_index.integrating | 164 |
| abstract_inverted_index.outperforms | 139 |
| abstract_inverted_index.significant | 158 |
| abstract_inverted_index.reconstructs | 81 |
| abstract_inverted_index.cross-entropy | 106 |
| abstract_inverted_index.demonstrating | 174 |
| abstract_inverted_index.vulnerability | 1, 46 |
| abstract_inverted_index.anomaly-guided | 179 |
| abstract_inverted_index.reconstruction | 77 |
| abstract_inverted_index.LLMAO-achieving | 145 |
| abstract_inverted_index.vulnerabilities | 128 |
| abstract_inverted_index.state-of-the-art | 140 |
| abstract_inverted_index.vulnerabilities, | 173 |
| abstract_inverted_index.vulnerabilities. | 40 |
| abstract_inverted_index.detectors-LineVul, | 142 |
| abstract_inverted_index.Supervised-learning-based | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |