Appendix A. Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the parameters used in the implementation of the frequency and time–frequency methods for each... Article Swipe
Leo Polansky
,
George Wittemyer
,
Paul C. Cross
,
Craig J. Tambling
,
Wayne M. Getz
·
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.3547041
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.3547041
Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the parameters used in the implementation of the frequency and time–frequency methods for each data set.
Related Topics
Concepts
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.3547041
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394524841
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394524841Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.3547041Digital Object Identifier
- Title
-
Appendix A. Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the parameters used in the implementation of the frequency and time–frequency methods for each...Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Leo Polansky, George Wittemyer, Paul C. Cross, Craig J. Tambling, Wayne M. GetzList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.3547041Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.3547041Direct OA link when available
- Concepts
-
Wavelet, Interval (graph theory), Sampling interval, Sampling (signal processing), Computer science, Fourier transform, Algorithm, Statistics, Mathematics, Artificial intelligence, Mathematical analysis, Combinatorics, Telecommunications, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394524841 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.3547041 |
| ids.doi | https://doi.org/10.6084/m9.figshare.3547041 |
| ids.openalex | https://openalex.org/W4394524841 |
| fwci | |
| type | dataset |
| title | Appendix A. Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the parameters used in the implementation of the frequency and time–frequency methods for each... |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.7990000247955322 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47432892 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6848574876785278 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[0].display_name | Wavelet |
| concepts[1].id | https://openalex.org/C2778067643 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6761980056762695 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[1].display_name | Interval (graph theory) |
| concepts[2].id | https://openalex.org/C2986012078 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6202406883239746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling interval |
| concepts[3].id | https://openalex.org/C140779682 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5823128819465637 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[3].display_name | Sampling (signal processing) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.546258807182312 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C102519508 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5234443545341492 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6520159 |
| concepts[5].display_name | Fourier transform |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39643001556396484 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37831488251686096 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.292441189289093 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16442301869392395 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08508428931236267 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C114614502 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07390391826629639 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[11].display_name | Combinatorics |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06933450698852539 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C94915269 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[13].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/wavelet |
| keywords[0].score | 0.6848574876785278 |
| keywords[0].display_name | Wavelet |
| keywords[1].id | https://openalex.org/keywords/interval |
| keywords[1].score | 0.6761980056762695 |
| keywords[1].display_name | Interval (graph theory) |
| keywords[2].id | https://openalex.org/keywords/sampling-interval |
| keywords[2].score | 0.6202406883239746 |
| keywords[2].display_name | Sampling interval |
| keywords[3].id | https://openalex.org/keywords/sampling |
| keywords[3].score | 0.5823128819465637 |
| keywords[3].display_name | Sampling (signal processing) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.546258807182312 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/fourier-transform |
| keywords[5].score | 0.5234443545341492 |
| keywords[5].display_name | Fourier transform |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.39643001556396484 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.37831488251686096 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.292441189289093 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.16442301869392395 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.08508428931236267 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/combinatorics |
| keywords[11].score | 0.07390391826629639 |
| keywords[11].display_name | Combinatorics |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.06933450698852539 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.3547041 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.3547041 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5079715807 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2738-8079 |
| authorships[0].author.display_name | Leo Polansky |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Leo Polansky |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072381303 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1640-5355 |
| authorships[1].author.display_name | George Wittemyer |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | George Wittemyer |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055904582 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8045-5213 |
| authorships[2].author.display_name | Paul C. Cross |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paul C. Cross |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001128122 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9830-5985 |
| authorships[3].author.display_name | Craig J. Tambling |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Craig J. Tambling |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052856233 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8784-9354 |
| authorships[4].author.display_name | Wayne M. Getz |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wayne M. Getz |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.3547041 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Appendix A. Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the parameters used in the implementation of the frequency and time–frequency methods for each... |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.7990000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W2326650695, https://openalex.org/W2371288064, https://openalex.org/W2038786780, https://openalex.org/W4207007294, https://openalex.org/W2027117755, https://openalex.org/W4212775797, https://openalex.org/W2059188306, https://openalex.org/W2350601260, https://openalex.org/W2026257011, https://openalex.org/W2155206396 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.3547041 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.3547041 |
| primary_location.id | doi:10.6084/m9.figshare.3547041 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.3547041 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 34 |
| abstract_inverted_index.a | 60 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.in | 32, 66 |
| abstract_inverted_index.of | 12, 21, 35, 43, 53, 69 |
| abstract_inverted_index.on | 1, 9 |
| abstract_inverted_index.to | 18, 26 |
| abstract_inverted_index.and | 4, 25, 51, 56, 59, 72 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.for | 75 |
| abstract_inverted_index.not | 40 |
| abstract_inverted_index.the | 2, 10, 29, 36, 44, 54, 63, 67, 70 |
| abstract_inverted_index.Fig. | 33 |
| abstract_inverted_index.data | 77 |
| abstract_inverted_index.each | 76 |
| abstract_inverted_index.lion | 55 |
| abstract_inverted_index.main | 37 |
| abstract_inverted_index.more | 14 |
| abstract_inverted_index.set. | 78 |
| abstract_inverted_index.show | 27 |
| abstract_inverted_index.size | 24 |
| abstract_inverted_index.text | 38 |
| abstract_inverted_index.that | 28 |
| abstract_inverted_index.used | 65 |
| abstract_inverted_index.data, | 58 |
| abstract_inverted_index.table | 61 |
| abstract_inverted_index.used, | 48 |
| abstract_inverted_index.issues | 20 |
| abstract_inverted_index.method | 11 |
| abstract_inverted_index.Details | 0 |
| abstract_inverted_index.Fourier | 3 |
| abstract_inverted_index.buffalo | 57 |
| abstract_inverted_index.details | 8 |
| abstract_inverted_index.methods | 74 |
| abstract_inverted_index.results | 30, 52 |
| abstract_inverted_index.studies | 17 |
| abstract_inverted_index.wavelet | 5 |
| abstract_inverted_index.analyses | 50 |
| abstract_inverted_index.artifact | 42 |
| abstract_inverted_index.evaluate | 19 |
| abstract_inverted_index.interval | 23 |
| abstract_inverted_index.methods, | 6 |
| abstract_inverted_index.movement | 46 |
| abstract_inverted_index.sampling | 22 |
| abstract_inverted_index.extensive | 15 |
| abstract_inverted_index.frequency | 71 |
| abstract_inverted_index.presented | 31 |
| abstract_inverted_index.additional | 7, 49 |
| abstract_inverted_index.parameters | 64 |
| abstract_inverted_index.particular | 45 |
| abstract_inverted_index.simulation | 16 |
| abstract_inverted_index.trajectory | 47 |
| abstract_inverted_index.simulation, | 13 |
| abstract_inverted_index.summarizing | 62 |
| abstract_inverted_index.implementation | 68 |
| abstract_inverted_index.time–frequency | 73 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |