Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: implication for evolution of landslide-generated debris flows Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1007/s10346-020-01402-w
Rainfall-induced landslides are a frequent and often catastrophic geological disaster, and the development of accurate early warning systems for such events is a primary challenge in the field of risk reduction. Understanding of the physical mechanisms of rainfall-induced landslides is key for early warning and prediction. In this study, a real-time multivariate early warning method based on hydro-mechanical analysis and a long-term sequence of real-time monitoring data was proposed and verified by applying the method to predict successive debris flow events that occurred in 2017 and 2018 in Yindongzi Gully, which is in Wenchuan earthquake region, China. Specifically, long-term sequence slope stability analysis of the in situ datasets for the landslide deposit as a benchmark was conducted, and a multivariate indicator early warning method that included the rainfall intensity-probability ( I-P ), saturation ( S i ), and inclination ( I r ) was then proposed. The measurements and analysis in the two early warning scenarios not only verified the reliability and practicality of the multivariate early warning method but also revealed the evolution processes and mechanism of the landslide-generated debris flow in response to rainfall. Thus, these findings provide a new strategy and guideline for accurately producing early warnings of rainfall-induced landslides.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10346-020-01402-w
- https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdf
- OA Status
- hybrid
- Cited By
- 44
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014504822
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014504822Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10346-020-01402-wDigital Object Identifier
- Title
-
Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: implication for evolution of landslide-generated debris flowsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-03Full publication date if available
- Authors
-
Zongji Yang, Liyong Wang, Jianping Qiao, Taro Uchimura, Lin WangList of authors in order
- Landing page
-
https://doi.org/10.1007/s10346-020-01402-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdfDirect OA link when available
- Concepts
-
Landslide, Warning system, Debris flow, Multivariate statistics, Debris, Natural hazard, Early warning system, Geology, Environmental science, Hydrology (agriculture), Computer science, Seismology, Geotechnical engineering, Machine learning, Telecommunications, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
44Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 10, 2023: 13, 2022: 5, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014504822 |
|---|---|
| doi | https://doi.org/10.1007/s10346-020-01402-w |
| ids.doi | https://doi.org/10.1007/s10346-020-01402-w |
| ids.mag | 3014504822 |
| ids.openalex | https://openalex.org/W3014504822 |
| fwci | 10.72957512 |
| type | article |
| title | Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: implication for evolution of landslide-generated debris flows |
| awards[0].id | https://openalex.org/G8779781770 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 41771021; 41471012 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 17 |
| biblio.last_page | 2419 |
| biblio.first_page | 2409 |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T12729 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Tree Root and Stability Studies |
| topics[2].id | https://openalex.org/T11046 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Geotechnical Engineering and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 3190 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4190 |
| apc_paid.value | 3190 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4190 |
| concepts[0].id | https://openalex.org/C186295008 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9270340204238892 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q167903 |
| concepts[0].display_name | Landslide |
| concepts[1].id | https://openalex.org/C29825287 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8069193363189697 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1427940 |
| concepts[1].display_name | Warning system |
| concepts[2].id | https://openalex.org/C2776643431 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7033497095108032 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1817963 |
| concepts[2].display_name | Debris flow |
| concepts[3].id | https://openalex.org/C161584116 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6416138410568237 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[3].display_name | Multivariate statistics |
| concepts[4].id | https://openalex.org/C2776023875 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5851620435714722 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q637703 |
| concepts[4].display_name | Debris |
| concepts[5].id | https://openalex.org/C39410599 |
| concepts[5].level | 2 |
| concepts[5].score | 0.569308340549469 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3433179 |
| concepts[5].display_name | Natural hazard |
| concepts[6].id | https://openalex.org/C2779296788 |
| concepts[6].level | 3 |
| concepts[6].score | 0.512846052646637 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5326904 |
| concepts[6].display_name | Early warning system |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4639880657196045 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3833712041378021 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C76886044 |
| concepts[9].level | 2 |
| concepts[9].score | 0.34531480073928833 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2883300 |
| concepts[9].display_name | Hydrology (agriculture) |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2875555753707886 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C165205528 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2407051920890808 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[11].display_name | Seismology |
| concepts[12].id | https://openalex.org/C187320778 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23802971839904785 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[12].display_name | Geotechnical engineering |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09941563010215759 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C111368507 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[15].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/landslide |
| keywords[0].score | 0.9270340204238892 |
| keywords[0].display_name | Landslide |
| keywords[1].id | https://openalex.org/keywords/warning-system |
| keywords[1].score | 0.8069193363189697 |
| keywords[1].display_name | Warning system |
| keywords[2].id | https://openalex.org/keywords/debris-flow |
| keywords[2].score | 0.7033497095108032 |
| keywords[2].display_name | Debris flow |
| keywords[3].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[3].score | 0.6416138410568237 |
| keywords[3].display_name | Multivariate statistics |
| keywords[4].id | https://openalex.org/keywords/debris |
| keywords[4].score | 0.5851620435714722 |
| keywords[4].display_name | Debris |
| keywords[5].id | https://openalex.org/keywords/natural-hazard |
| keywords[5].score | 0.569308340549469 |
| keywords[5].display_name | Natural hazard |
| keywords[6].id | https://openalex.org/keywords/early-warning-system |
| keywords[6].score | 0.512846052646637 |
| keywords[6].display_name | Early warning system |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.4639880657196045 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.3833712041378021 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/hydrology |
| keywords[9].score | 0.34531480073928833 |
| keywords[9].display_name | Hydrology (agriculture) |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.2875555753707886 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/seismology |
| keywords[11].score | 0.2407051920890808 |
| keywords[11].display_name | Seismology |
| keywords[12].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[12].score | 0.23802971839904785 |
| keywords[12].display_name | Geotechnical engineering |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.09941563010215759 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1007/s10346-020-01402-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2645077 |
| locations[0].source.issn | 1612-510X, 1612-5118 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1612-510X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Landslides |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Landslides |
| locations[0].landing_page_url | https://doi.org/10.1007/s10346-020-01402-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109297451 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4108-2092 |
| authorships[0].author.display_name | Zongji Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210124748 |
| authorships[0].institutions[1].ror | https://ror.org/02z0nsb22 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Institute of Mountain Hazards and Environment |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zongji Yang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[1].author.id | https://openalex.org/A5101750934 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1130-9922 |
| authorships[1].author.display_name | Liyong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210124748 |
| authorships[1].institutions[1].ror | https://ror.org/02z0nsb22 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Institute of Mountain Hazards and Environment |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liyong Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[2].author.id | https://openalex.org/A5100701048 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jianping Qiao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210124748 |
| authorships[2].institutions[1].ror | https://ror.org/02z0nsb22 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Institute of Mountain Hazards and Environment |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianping Qiao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China |
| authorships[3].author.id | https://openalex.org/A5033583788 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8807-0761 |
| authorships[3].author.display_name | Taro Uchimura |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I72253084 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, Saitama University, Saitama, 338-8570, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I72253084 |
| authorships[3].institutions[0].ror | https://ror.org/02evnh647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I72253084 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Saitama University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Taro Uchimura |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil & Environmental Engineering, Saitama University, Saitama, 338-8570, Japan |
| authorships[4].author.id | https://openalex.org/A5100632145 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5288-2477 |
| authorships[4].author.display_name | Lin Wang |
| authorships[4].affiliations[0].raw_affiliation_string | Chuo Kaihatsu Corporation, Shinjuku-ku, Tokyo, 169-8612, Japan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lin Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Chuo Kaihatsu Corporation, Shinjuku-ku, Tokyo, 169-8612, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: implication for evolution of landslide-generated debris flows |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W2911563142, https://openalex.org/W2093486058, https://openalex.org/W187473655, https://openalex.org/W2991434004, https://openalex.org/W1636843286, https://openalex.org/W2356868884, https://openalex.org/W2793141244, https://openalex.org/W2357620750, https://openalex.org/W2356402003, https://openalex.org/W2382573398 |
| cited_by_count | 44 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10346-020-01402-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2645077 |
| best_oa_location.source.issn | 1612-510X, 1612-5118 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1612-510X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Landslides |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Landslides |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10346-020-01402-w |
| primary_location.id | doi:10.1007/s10346-020-01402-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2645077 |
| primary_location.source.issn | 1612-510X, 1612-5118 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1612-510X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Landslides |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10346-020-01402-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Landslides |
| primary_location.landing_page_url | https://doi.org/10.1007/s10346-020-01402-w |
| publication_date | 2020-04-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2054088683, https://openalex.org/W2096868362, https://openalex.org/W2047020077, https://openalex.org/W2953436494, https://openalex.org/W2314389726, https://openalex.org/W2775427771, https://openalex.org/W2089307657, https://openalex.org/W2256320013, https://openalex.org/W1602042996, https://openalex.org/W2123102880, https://openalex.org/W2192451825, https://openalex.org/W2044622173, https://openalex.org/W2562594574, https://openalex.org/W3124999132, https://openalex.org/W2083811565, https://openalex.org/W2072975664, https://openalex.org/W2079965317, https://openalex.org/W1575546607, https://openalex.org/W2416307064, https://openalex.org/W2082469684, https://openalex.org/W2340402723, https://openalex.org/W1989842191, https://openalex.org/W2264992118, https://openalex.org/W3125446544, https://openalex.org/W2734845863, https://openalex.org/W2891964720, https://openalex.org/W2411440880, https://openalex.org/W2466190111, https://openalex.org/W2072357889, https://openalex.org/W2187054651, https://openalex.org/W2604912559, https://openalex.org/W2771458228, https://openalex.org/W2802274080, https://openalex.org/W2369645373, https://openalex.org/W2352269951, https://openalex.org/W2377532794, https://openalex.org/W2013730455, https://openalex.org/W2353823600, https://openalex.org/W2383389470 |
| referenced_works_count | 39 |
| abstract_inverted_index.( | 130, 134, 140 |
| abstract_inverted_index.) | 143 |
| abstract_inverted_index.I | 141 |
| abstract_inverted_index.S | 135 |
| abstract_inverted_index.a | 4, 23, 50, 61, 114, 119, 191 |
| abstract_inverted_index.i | 136 |
| abstract_inverted_index.r | 142 |
| abstract_inverted_index.), | 132, 137 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.as | 113 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.in | 26, 84, 88, 93, 106, 151, 183 |
| abstract_inverted_index.is | 22, 40, 92 |
| abstract_inverted_index.of | 14, 29, 33, 37, 64, 104, 164, 178, 201 |
| abstract_inverted_index.on | 57 |
| abstract_inverted_index.to | 76, 185 |
| abstract_inverted_index.I-P | 131 |
| abstract_inverted_index.The | 147 |
| abstract_inverted_index.and | 6, 11, 45, 60, 70, 86, 118, 138, 149, 162, 176, 194 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.but | 170 |
| abstract_inverted_index.for | 19, 42, 109, 196 |
| abstract_inverted_index.key | 41 |
| abstract_inverted_index.new | 192 |
| abstract_inverted_index.not | 157 |
| abstract_inverted_index.the | 12, 27, 34, 74, 105, 110, 127, 152, 160, 165, 173, 179 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.was | 68, 116, 144 |
| abstract_inverted_index.2017 | 85 |
| abstract_inverted_index.2018 | 87 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.flow | 80, 182 |
| abstract_inverted_index.only | 158 |
| abstract_inverted_index.risk | 30 |
| abstract_inverted_index.situ | 107 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.that | 82, 125 |
| abstract_inverted_index.then | 145 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.Thus, | 187 |
| abstract_inverted_index.based | 56 |
| abstract_inverted_index.early | 16, 43, 53, 122, 154, 167, 199 |
| abstract_inverted_index.field | 28 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.slope | 101 |
| abstract_inverted_index.these | 188 |
| abstract_inverted_index.which | 91 |
| abstract_inverted_index.China. | 97 |
| abstract_inverted_index.Gully, | 90 |
| abstract_inverted_index.debris | 79, 181 |
| abstract_inverted_index.events | 21, 81 |
| abstract_inverted_index.method | 55, 75, 124, 169 |
| abstract_inverted_index.study, | 49 |
| abstract_inverted_index.deposit | 112 |
| abstract_inverted_index.predict | 77 |
| abstract_inverted_index.primary | 24 |
| abstract_inverted_index.provide | 190 |
| abstract_inverted_index.region, | 96 |
| abstract_inverted_index.systems | 18 |
| abstract_inverted_index.warning | 17, 44, 54, 123, 155, 168 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Wenchuan | 94 |
| abstract_inverted_index.accurate | 15 |
| abstract_inverted_index.analysis | 59, 103, 150 |
| abstract_inverted_index.applying | 73 |
| abstract_inverted_index.datasets | 108 |
| abstract_inverted_index.findings | 189 |
| abstract_inverted_index.frequent | 5 |
| abstract_inverted_index.included | 126 |
| abstract_inverted_index.occurred | 83 |
| abstract_inverted_index.physical | 35 |
| abstract_inverted_index.proposed | 69 |
| abstract_inverted_index.rainfall | 128 |
| abstract_inverted_index.response | 184 |
| abstract_inverted_index.revealed | 172 |
| abstract_inverted_index.sequence | 63, 100 |
| abstract_inverted_index.strategy | 193 |
| abstract_inverted_index.verified | 71, 159 |
| abstract_inverted_index.warnings | 200 |
| abstract_inverted_index.Yindongzi | 89 |
| abstract_inverted_index.benchmark | 115 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.disaster, | 10 |
| abstract_inverted_index.evolution | 174 |
| abstract_inverted_index.guideline | 195 |
| abstract_inverted_index.indicator | 121 |
| abstract_inverted_index.landslide | 111 |
| abstract_inverted_index.long-term | 62, 99 |
| abstract_inverted_index.mechanism | 177 |
| abstract_inverted_index.processes | 175 |
| abstract_inverted_index.producing | 198 |
| abstract_inverted_index.proposed. | 146 |
| abstract_inverted_index.rainfall. | 186 |
| abstract_inverted_index.real-time | 51, 65 |
| abstract_inverted_index.scenarios | 156 |
| abstract_inverted_index.stability | 102 |
| abstract_inverted_index.accurately | 197 |
| abstract_inverted_index.conducted, | 117 |
| abstract_inverted_index.earthquake | 95 |
| abstract_inverted_index.geological | 9 |
| abstract_inverted_index.landslides | 2, 39 |
| abstract_inverted_index.mechanisms | 36 |
| abstract_inverted_index.monitoring | 66 |
| abstract_inverted_index.reduction. | 31 |
| abstract_inverted_index.saturation | 133 |
| abstract_inverted_index.successive | 78 |
| abstract_inverted_index.development | 13 |
| abstract_inverted_index.inclination | 139 |
| abstract_inverted_index.landslides. | 203 |
| abstract_inverted_index.prediction. | 46 |
| abstract_inverted_index.reliability | 161 |
| abstract_inverted_index.catastrophic | 8 |
| abstract_inverted_index.measurements | 148 |
| abstract_inverted_index.multivariate | 52, 120, 166 |
| abstract_inverted_index.practicality | 163 |
| abstract_inverted_index.Specifically, | 98 |
| abstract_inverted_index.Understanding | 32 |
| abstract_inverted_index.Rainfall-induced | 1 |
| abstract_inverted_index.hydro-mechanical | 58 |
| abstract_inverted_index.rainfall-induced | 38, 202 |
| abstract_inverted_index.landslide-generated | 180 |
| abstract_inverted_index.intensity-probability | 129 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5109297451 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210124748 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.97718742 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |