Application of AI-Based Techniques on Moody’s Diagram for Predicting Friction Factor in Pipe Flow Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/j6040036
The friction factor is a widely used parameter in characterizing flow resistance in pipes and open channels. Recently, the application of machine learning and artificial intelligence (AI) has found several applications in water resource engineering. With this in view, the application of artificial intelligence techniques on Moody’s diagram for predicting the friction factor in pipe flow for both transition and turbulent flow regions has been considered in the present study. Various AI methods, like Random Forest (RF), Random Tree (RT), Support Vector Machine (SVM), M5 tree (M5), M5Rules, and REPTree models, are applied to predict the friction factor. While performing the statistical analysis (root-mean-square error (RMSE), mean absolute error (MAE), squared correlation coefficient (R2), and Nash–Sutcliffe efficiency (NSE)), it was revealed that the predictions made by the Random Forest model were the most reliable when compared to other AI tools. The main objective of this study was to highlight the limitations of artificial intelligence (AI) techniques when attempting to effectively capture the characteristics and patterns of the friction curve in certain regions of turbulent flow. To further substantiate this behavior, the conventional algebraic equation was used as a benchmark to test how well the current AI tools work. The friction factor estimates using the algebraic equation were found to be even more accurate than the Random Forest model, within a relative error of ≤±1%, in those regions where the AI models failed to capture the nature and variation in the friction factor.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/j6040036
- https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945
- OA Status
- gold
- Cited By
- 2
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387461789
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387461789Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/j6040036Digital Object Identifier
- Title
-
Application of AI-Based Techniques on Moody’s Diagram for Predicting Friction Factor in Pipe FlowWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-07Full publication date if available
- Authors
-
Ritusnata Mishra, C. S. P. OjhaList of authors in order
- Landing page
-
https://doi.org/10.3390/j6040036Publisher landing page
- PDF URL
-
https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945Direct OA link when available
- Concepts
-
Mean squared error, Turbulence, Flow (mathematics), Artificial intelligence, Machine learning, Support vector machine, Root mean square, Mathematics, Statistics, Computer science, Algorithm, Engineering, Mechanics, Physics, Geometry, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387461789 |
|---|---|
| doi | https://doi.org/10.3390/j6040036 |
| ids.doi | https://doi.org/10.3390/j6040036 |
| ids.openalex | https://openalex.org/W4387461789 |
| fwci | 0.40901397 |
| type | article |
| title | Application of AI-Based Techniques on Moody’s Diagram for Predicting Friction Factor in Pipe Flow |
| biblio.issue | 4 |
| biblio.volume | 6 |
| biblio.last_page | 563 |
| biblio.first_page | 544 |
| topics[0].id | https://openalex.org/T11220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Water Systems and Optimization |
| topics[1].id | https://openalex.org/T12022 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Hydraulic flow and structures |
| topics[2].id | https://openalex.org/T10577 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9855999946594238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Hydrology and Sediment Transport Processes |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1299 |
| apc_paid.value | 1200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1299 |
| concepts[0].id | https://openalex.org/C139945424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6693293452262878 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[0].display_name | Mean squared error |
| concepts[1].id | https://openalex.org/C196558001 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5880096554756165 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[1].display_name | Turbulence |
| concepts[2].id | https://openalex.org/C38349280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49790430068969727 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[2].display_name | Flow (mathematics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48191097378730774 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4360387325286865 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43169134855270386 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C71907059 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41411423683166504 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q223323 |
| concepts[6].display_name | Root mean square |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39737215638160706 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37601903080940247 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.36993592977523804 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3208504319190979 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2400367259979248 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C57879066 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2033165693283081 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[12].display_name | Mechanics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12206345796585083 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11470547318458557 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C119599485 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[15].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/mean-squared-error |
| keywords[0].score | 0.6693293452262878 |
| keywords[0].display_name | Mean squared error |
| keywords[1].id | https://openalex.org/keywords/turbulence |
| keywords[1].score | 0.5880096554756165 |
| keywords[1].display_name | Turbulence |
| keywords[2].id | https://openalex.org/keywords/flow |
| keywords[2].score | 0.49790430068969727 |
| keywords[2].display_name | Flow (mathematics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.48191097378730774 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4360387325286865 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.43169134855270386 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/root-mean-square |
| keywords[6].score | 0.41411423683166504 |
| keywords[6].display_name | Root mean square |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.39737215638160706 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.37601903080940247 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.36993592977523804 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3208504319190979 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.2400367259979248 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/mechanics |
| keywords[12].score | 0.2033165693283081 |
| keywords[12].display_name | Mechanics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.12206345796585083 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.11470547318458557 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.3390/j6040036 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210238672 |
| locations[0].source.issn | 2571-8800 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2571-8800 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | J — Multidisciplinary Scientific Journal |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | J |
| locations[0].landing_page_url | https://doi.org/10.3390/j6040036 |
| locations[1].id | pmh:oai:doaj.org/article:2c79217bc5674a8a83675faabf5ee50f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | J, Vol 6, Iss 4, Pp 544-563 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/2c79217bc5674a8a83675faabf5ee50f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5113019213 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ritusnata Mishra |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I154851008 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
| authorships[0].institutions[0].id | https://openalex.org/I154851008 |
| authorships[0].institutions[0].ror | https://ror.org/00582g326 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I154851008 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Roorkee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ritusnata Mishra |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
| authorships[1].author.id | https://openalex.org/A5035076152 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3364-0429 |
| authorships[1].author.display_name | C. S. P. Ojha |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154851008 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
| authorships[1].institutions[0].id | https://openalex.org/I154851008 |
| authorships[1].institutions[0].ror | https://ror.org/00582g326 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154851008 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Roorkee |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Chandra Shekhar Prasad Ojha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of AI-Based Techniques on Moody’s Diagram for Predicting Friction Factor in Pipe Flow |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Water Systems and Optimization |
| related_works | https://openalex.org/W2090763504, https://openalex.org/W148178222, https://openalex.org/W2102148524, https://openalex.org/W2104657898, https://openalex.org/W1948992892, https://openalex.org/W1886884218, https://openalex.org/W1910826599, https://openalex.org/W1980100242, https://openalex.org/W2530420969, https://openalex.org/W2051187167 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/j6040036 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210238672 |
| best_oa_location.source.issn | 2571-8800 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2571-8800 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | J — Multidisciplinary Scientific Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | J |
| best_oa_location.landing_page_url | https://doi.org/10.3390/j6040036 |
| primary_location.id | doi:10.3390/j6040036 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210238672 |
| primary_location.source.issn | 2571-8800 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2571-8800 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | J — Multidisciplinary Scientific Journal |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2571-8800/6/4/36/pdf?version=1696683945 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | J |
| primary_location.landing_page_url | https://doi.org/10.3390/j6040036 |
| publication_date | 2023-10-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3196064067, https://openalex.org/W4323834347, https://openalex.org/W2005774248, https://openalex.org/W1990687151, https://openalex.org/W3135085526, https://openalex.org/W2052929839, https://openalex.org/W2002773747, https://openalex.org/W2019808337, https://openalex.org/W624611124, https://openalex.org/W1991271653, https://openalex.org/W4362470853, https://openalex.org/W4212883601, https://openalex.org/W6637642229, https://openalex.org/W2783647757, https://openalex.org/W1964357740, https://openalex.org/W843278983, https://openalex.org/W2094040832 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 4, 187, 219 |
| abstract_inverted_index.AI | 71, 138, 195, 229 |
| abstract_inverted_index.M5 | 84 |
| abstract_inverted_index.To | 175 |
| abstract_inverted_index.as | 186 |
| abstract_inverted_index.be | 209 |
| abstract_inverted_index.by | 125 |
| abstract_inverted_index.in | 8, 12, 31, 37, 53, 66, 169, 224, 238 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 118 |
| abstract_inverted_index.of | 20, 41, 143, 151, 165, 172, 222 |
| abstract_inverted_index.on | 45 |
| abstract_inverted_index.to | 93, 136, 147, 158, 189, 208, 232 |
| abstract_inverted_index.The | 0, 140, 198 |
| abstract_inverted_index.and | 14, 23, 59, 88, 114, 163, 236 |
| abstract_inverted_index.are | 91 |
| abstract_inverted_index.for | 48, 56 |
| abstract_inverted_index.has | 27, 63 |
| abstract_inverted_index.how | 191 |
| abstract_inverted_index.the | 18, 39, 50, 67, 95, 100, 122, 126, 131, 149, 161, 166, 180, 193, 203, 214, 228, 234, 239 |
| abstract_inverted_index.was | 119, 146, 184 |
| abstract_inverted_index.(AI) | 26, 154 |
| abstract_inverted_index.Tree | 78 |
| abstract_inverted_index.With | 35 |
| abstract_inverted_index.been | 64 |
| abstract_inverted_index.both | 57 |
| abstract_inverted_index.even | 210 |
| abstract_inverted_index.flow | 10, 55, 61 |
| abstract_inverted_index.like | 73 |
| abstract_inverted_index.made | 124 |
| abstract_inverted_index.main | 141 |
| abstract_inverted_index.mean | 106 |
| abstract_inverted_index.more | 211 |
| abstract_inverted_index.most | 132 |
| abstract_inverted_index.open | 15 |
| abstract_inverted_index.pipe | 54 |
| abstract_inverted_index.test | 190 |
| abstract_inverted_index.than | 213 |
| abstract_inverted_index.that | 121 |
| abstract_inverted_index.this | 36, 144, 178 |
| abstract_inverted_index.tree | 85 |
| abstract_inverted_index.used | 6, 185 |
| abstract_inverted_index.well | 192 |
| abstract_inverted_index.were | 130, 206 |
| abstract_inverted_index.when | 134, 156 |
| abstract_inverted_index.(M5), | 86 |
| abstract_inverted_index.(R2), | 113 |
| abstract_inverted_index.(RF), | 76 |
| abstract_inverted_index.(RT), | 79 |
| abstract_inverted_index.While | 98 |
| abstract_inverted_index.curve | 168 |
| abstract_inverted_index.error | 104, 108, 221 |
| abstract_inverted_index.flow. | 174 |
| abstract_inverted_index.found | 28, 207 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.other | 137 |
| abstract_inverted_index.pipes | 13 |
| abstract_inverted_index.study | 145 |
| abstract_inverted_index.those | 225 |
| abstract_inverted_index.tools | 196 |
| abstract_inverted_index.using | 202 |
| abstract_inverted_index.view, | 38 |
| abstract_inverted_index.water | 32 |
| abstract_inverted_index.where | 227 |
| abstract_inverted_index.work. | 197 |
| abstract_inverted_index.(MAE), | 109 |
| abstract_inverted_index.(SVM), | 83 |
| abstract_inverted_index.Forest | 75, 128, 216 |
| abstract_inverted_index.Random | 74, 77, 127, 215 |
| abstract_inverted_index.Vector | 81 |
| abstract_inverted_index.factor | 2, 52, 200 |
| abstract_inverted_index.failed | 231 |
| abstract_inverted_index.model, | 217 |
| abstract_inverted_index.models | 230 |
| abstract_inverted_index.nature | 235 |
| abstract_inverted_index.study. | 69 |
| abstract_inverted_index.tools. | 139 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.within | 218 |
| abstract_inverted_index.(NSE)), | 117 |
| abstract_inverted_index.(RMSE), | 105 |
| abstract_inverted_index.Machine | 82 |
| abstract_inverted_index.REPTree | 89 |
| abstract_inverted_index.Support | 80 |
| abstract_inverted_index.Various | 70 |
| abstract_inverted_index.applied | 92 |
| abstract_inverted_index.capture | 160, 233 |
| abstract_inverted_index.certain | 170 |
| abstract_inverted_index.current | 194 |
| abstract_inverted_index.diagram | 47 |
| abstract_inverted_index.factor. | 97, 241 |
| abstract_inverted_index.further | 176 |
| abstract_inverted_index.machine | 21 |
| abstract_inverted_index.models, | 90 |
| abstract_inverted_index.predict | 94 |
| abstract_inverted_index.present | 68 |
| abstract_inverted_index.regions | 62, 171, 226 |
| abstract_inverted_index.several | 29 |
| abstract_inverted_index.squared | 110 |
| abstract_inverted_index.M5Rules, | 87 |
| abstract_inverted_index.absolute | 107 |
| abstract_inverted_index.accurate | 212 |
| abstract_inverted_index.analysis | 102 |
| abstract_inverted_index.compared | 135 |
| abstract_inverted_index.equation | 183, 205 |
| abstract_inverted_index.friction | 1, 51, 96, 167, 199, 240 |
| abstract_inverted_index.learning | 22 |
| abstract_inverted_index.methods, | 72 |
| abstract_inverted_index.patterns | 164 |
| abstract_inverted_index.relative | 220 |
| abstract_inverted_index.reliable | 133 |
| abstract_inverted_index.resource | 33 |
| abstract_inverted_index.revealed | 120 |
| abstract_inverted_index.≤±1%, | 223 |
| abstract_inverted_index.Moody’s | 46 |
| abstract_inverted_index.Recently, | 17 |
| abstract_inverted_index.algebraic | 182, 204 |
| abstract_inverted_index.behavior, | 179 |
| abstract_inverted_index.benchmark | 188 |
| abstract_inverted_index.channels. | 16 |
| abstract_inverted_index.estimates | 201 |
| abstract_inverted_index.highlight | 148 |
| abstract_inverted_index.objective | 142 |
| abstract_inverted_index.parameter | 7 |
| abstract_inverted_index.turbulent | 60, 173 |
| abstract_inverted_index.variation | 237 |
| abstract_inverted_index.artificial | 24, 42, 152 |
| abstract_inverted_index.attempting | 157 |
| abstract_inverted_index.considered | 65 |
| abstract_inverted_index.efficiency | 116 |
| abstract_inverted_index.performing | 99 |
| abstract_inverted_index.predicting | 49 |
| abstract_inverted_index.resistance | 11 |
| abstract_inverted_index.techniques | 44, 155 |
| abstract_inverted_index.transition | 58 |
| abstract_inverted_index.application | 19, 40 |
| abstract_inverted_index.coefficient | 112 |
| abstract_inverted_index.correlation | 111 |
| abstract_inverted_index.effectively | 159 |
| abstract_inverted_index.limitations | 150 |
| abstract_inverted_index.predictions | 123 |
| abstract_inverted_index.statistical | 101 |
| abstract_inverted_index.applications | 30 |
| abstract_inverted_index.conventional | 181 |
| abstract_inverted_index.engineering. | 34 |
| abstract_inverted_index.intelligence | 25, 43, 153 |
| abstract_inverted_index.substantiate | 177 |
| abstract_inverted_index.characterizing | 9 |
| abstract_inverted_index.characteristics | 162 |
| abstract_inverted_index.Nash–Sutcliffe | 115 |
| abstract_inverted_index.(root-mean-square | 103 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5113019213 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I154851008 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.57856473 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |