Application of an Optimized Machine Learning Model Based on Bayesian Algorithm in Predicting Heavy Metal Adsorption by Biochar Article Swipe
Hongwei Yang
,
Xiangrong Liu
,
Yingliang Liu
,
Jianghu Cui
,
Yong Xiao
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4438236
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4438236
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.4438236
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4372054232
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4372054232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4438236Digital Object Identifier
- Title
-
Application of an Optimized Machine Learning Model Based on Bayesian Algorithm in Predicting Heavy Metal Adsorption by BiocharWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Hongwei Yang, Xiangrong Liu, Yingliang Liu, Jianghu Cui, Yong XiaoList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4438236Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4438236Direct OA link when available
- Concepts
-
Biochar, Adsorption, Bayesian probability, Algorithm, Metal, Computer science, Bayesian inference, Machine learning, Artificial intelligence, Materials science, Chemistry, Engineering, Chemical engineering, Metallurgy, Organic chemistry, PyrolysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4372054232 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4438236 |
| ids.doi | https://doi.org/10.2139/ssrn.4438236 |
| ids.openalex | https://openalex.org/W4372054232 |
| fwci | 0.0 |
| type | preprint |
| title | Application of an Optimized Machine Learning Model Based on Bayesian Algorithm in Predicting Heavy Metal Adsorption by Biochar |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14249 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.37450000643730164 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2311 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Water Quality Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.35030001401901245 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.3418999910354614 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C56085101 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9266443252563477 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q905495 |
| concepts[0].display_name | Biochar |
| concepts[1].id | https://openalex.org/C150394285 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6117308139801025 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180254 |
| concepts[1].display_name | Adsorption |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5802614688873291 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4883696436882019 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C544153396 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44261792302131653 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11426 |
| concepts[4].display_name | Metal |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4384080767631531 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C160234255 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4243868291378021 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[6].display_name | Bayesian inference |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.390379399061203 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3840245008468628 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.30966800451278687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.24343106150627136 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17585435509681702 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C42360764 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14386481046676636 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[12].display_name | Chemical engineering |
| concepts[13].id | https://openalex.org/C191897082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1395324468612671 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[13].display_name | Metallurgy |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C36759035 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q176848 |
| concepts[15].display_name | Pyrolysis |
| keywords[0].id | https://openalex.org/keywords/biochar |
| keywords[0].score | 0.9266443252563477 |
| keywords[0].display_name | Biochar |
| keywords[1].id | https://openalex.org/keywords/adsorption |
| keywords[1].score | 0.6117308139801025 |
| keywords[1].display_name | Adsorption |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.5802614688873291 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.4883696436882019 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/metal |
| keywords[4].score | 0.44261792302131653 |
| keywords[4].display_name | Metal |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4384080767631531 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/bayesian-inference |
| keywords[6].score | 0.4243868291378021 |
| keywords[6].display_name | Bayesian inference |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.390379399061203 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3840245008468628 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.30966800451278687 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.24343106150627136 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.17585435509681702 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/chemical-engineering |
| keywords[12].score | 0.14386481046676636 |
| keywords[12].display_name | Chemical engineering |
| keywords[13].id | https://openalex.org/keywords/metallurgy |
| keywords[13].score | 0.1395324468612671 |
| keywords[13].display_name | Metallurgy |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4438236 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.4438236 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101732749 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9136-5544 |
| authorships[0].author.display_name | Hongwei Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[0].affiliations[0].raw_affiliation_string | South China Agricultural University |
| authorships[0].institutions[0].id | https://openalex.org/I101479585 |
| authorships[0].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongwei Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | South China Agricultural University |
| authorships[1].author.id | https://openalex.org/A5026771763 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9885-1978 |
| authorships[1].author.display_name | Xiangrong Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangrong Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076951154 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5378-3577 |
| authorships[2].author.display_name | Yingliang Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[2].affiliations[0].raw_affiliation_string | South China Agricultural University |
| authorships[2].institutions[0].id | https://openalex.org/I101479585 |
| authorships[2].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | South China Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yingliang Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | South China Agricultural University |
| authorships[3].author.id | https://openalex.org/A5018501096 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0108-837X |
| authorships[3].author.display_name | Jianghu Cui |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianghu Cui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100738543 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4614-9017 |
| authorships[4].author.display_name | Yong Xiao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I101479585 |
| authorships[4].affiliations[0].raw_affiliation_string | South China Agricultural University |
| authorships[4].institutions[0].id | https://openalex.org/I101479585 |
| authorships[4].institutions[0].ror | https://ror.org/05v9jqt67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I101479585 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | South China Agricultural University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yong Xiao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | South China Agricultural University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.4438236 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of an Optimized Machine Learning Model Based on Bayesian Algorithm in Predicting Heavy Metal Adsorption by Biochar |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14249 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.37450000643730164 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2311 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Water Quality Monitoring and Analysis |
| related_works | https://openalex.org/W1919985504, https://openalex.org/W2407375987, https://openalex.org/W2950975704, https://openalex.org/W2010643158, https://openalex.org/W2505726097, https://openalex.org/W2106867672, https://openalex.org/W4310268968, https://openalex.org/W3081214562, https://openalex.org/W2753713401, https://openalex.org/W2053745677 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4438236 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.4438236 |
| primary_location.id | doi:10.2139/ssrn.4438236 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.4438236 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.0675807 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |