Application of artificial intelligence and machine learning in lung transplantation: a comprehensive review Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fdgth.2025.1583490
Lung transplantation (LTx) is an effective method for treating end-stage lung disease. The management of lung transplant recipients is a complex, multi-stage process that involves preoperative, intraoperative, and postoperative phases, integrating multidimensional data such as demographics, clinical data, pathology, imaging, and omics. Artificial intelligence (AI) and machine learning (ML) excel in handling such complex data and contribute to preoperative assessment and postoperative management of LTx, including the optimization of organ allocation, assessment of donor suitability, prediction of patient and graft survival, evaluation of quality of life, and early identification of complications, thereby enhancing the personalization of clinical decision-making. However, these technologies face numerous challenges in real-world clinical applications, such as the quality and reliability of datasets, model interpretability, physicians' trust in the technology, and legal and ethical issues. These problems require further research and resolution so that AI and ML can more effectively enhance the success rate of LTx and improve patients' quality of life.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3389/fdgth.2025.1583490
- https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdf
- OA Status
- gold
- Cited By
- 3
- References
- 115
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410014275
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410014275Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fdgth.2025.1583490Digital Object Identifier
- Title
-
Application of artificial intelligence and machine learning in lung transplantation: a comprehensive reviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Xiting Liu, Wenqian Chen, Wenwen Du, Pengmei Li, Xiaoxing WangList of authors in order
- Landing page
-
https://doi.org/10.3389/fdgth.2025.1583490Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdfDirect OA link when available
- Concepts
-
Interpretability, Lung transplantation, Personalization, Artificial intelligence, Medicine, Quality of life (healthcare), Computer science, Transplantation, Process (computing), Medical physics, Machine learning, Surgery, Nursing, World Wide Web, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
115Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410014275 |
|---|---|
| doi | https://doi.org/10.3389/fdgth.2025.1583490 |
| ids.doi | https://doi.org/10.3389/fdgth.2025.1583490 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40376618 |
| ids.openalex | https://openalex.org/W4410014275 |
| fwci | 19.86414382 |
| type | review |
| title | Application of artificial intelligence and machine learning in lung transplantation: a comprehensive review |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 1583490 |
| biblio.first_page | 1583490 |
| topics[0].id | https://openalex.org/T11189 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Transplantation: Methods and Outcomes |
| topics[1].id | https://openalex.org/T10999 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Organ Transplantation Techniques and Outcomes |
| topics[2].id | https://openalex.org/T10373 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9854999780654907 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2747 |
| topics[2].subfield.display_name | Transplantation |
| topics[2].display_name | Renal Transplantation Outcomes and Treatments |
| is_xpac | False |
| apc_list.value | 1900 |
| apc_list.currency | USD |
| apc_list.value_usd | 1900 |
| apc_paid.value | 1900 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1900 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8452955484390259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C2781448352 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6441046595573425 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1637912 |
| concepts[1].display_name | Lung transplantation |
| concepts[2].id | https://openalex.org/C183003079 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6154876351356506 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1000371 |
| concepts[2].display_name | Personalization |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5110510587692261 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4659750163555145 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C2779951463 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4583648145198822 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7268788 |
| concepts[5].display_name | Quality of life (healthcare) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.43945837020874023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2911091166 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4288483262062073 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q106419912 |
| concepts[7].display_name | Transplantation |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4112706482410431 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C19527891 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3562014698982239 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[9].display_name | Medical physics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3557184934616089 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C141071460 |
| concepts[11].level | 1 |
| concepts[11].score | 0.27422648668289185 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[11].display_name | Surgery |
| concepts[12].id | https://openalex.org/C159110408 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[12].display_name | Nursing |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8452955484390259 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/lung-transplantation |
| keywords[1].score | 0.6441046595573425 |
| keywords[1].display_name | Lung transplantation |
| keywords[2].id | https://openalex.org/keywords/personalization |
| keywords[2].score | 0.6154876351356506 |
| keywords[2].display_name | Personalization |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5110510587692261 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.4659750163555145 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/quality-of-life |
| keywords[5].score | 0.4583648145198822 |
| keywords[5].display_name | Quality of life (healthcare) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.43945837020874023 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/transplantation |
| keywords[7].score | 0.4288483262062073 |
| keywords[7].display_name | Transplantation |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4112706482410431 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/medical-physics |
| keywords[9].score | 0.3562014698982239 |
| keywords[9].display_name | Medical physics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3557184934616089 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/surgery |
| keywords[11].score | 0.27422648668289185 |
| keywords[11].display_name | Surgery |
| language | en |
| locations[0].id | doi:10.3389/fdgth.2025.1583490 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210170686 |
| locations[0].source.issn | 2673-253X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-253X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Digital Health |
| locations[0].landing_page_url | https://doi.org/10.3389/fdgth.2025.1583490 |
| locations[1].id | pmid:40376618 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40376618 |
| locations[2].id | pmh:oai:doaj.org/article:32c28a40035e446fbe24248a31c06396 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Digital Health, Vol 7 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/32c28a40035e446fbe24248a31c06396 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12078212 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Digit Health |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12078212 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5026985387 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0188-5504 |
| authorships[0].author.display_name | Xiting Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801051648 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[0].institutions[0].id | https://openalex.org/I2801051648 |
| authorships[0].institutions[0].ror | https://ror.org/037cjxp13 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801051648 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China-Japan Friendship Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiting Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[1].author.id | https://openalex.org/A5103108021 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1546-6930 |
| authorships[1].author.display_name | Wenqian Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801051648 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[1].institutions[0].id | https://openalex.org/I2801051648 |
| authorships[1].institutions[0].ror | https://ror.org/037cjxp13 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801051648 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China-Japan Friendship Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenqian Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[2].author.id | https://openalex.org/A5022541493 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9826-8405 |
| authorships[2].author.display_name | Wenwen Du |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801051648 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[2].institutions[0].id | https://openalex.org/I2801051648 |
| authorships[2].institutions[0].ror | https://ror.org/037cjxp13 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801051648 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China-Japan Friendship Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenwen Du |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[3].author.id | https://openalex.org/A5057566040 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5307-4797 |
| authorships[3].author.display_name | Pengmei Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801051648 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Pharmacy Administration, Clinical Pharmacy School of Pharmaceutical Sciences, Peking University, Beijing, China. |
| authorships[3].institutions[0].id | https://openalex.org/I2801051648 |
| authorships[3].institutions[0].ror | https://ror.org/037cjxp13 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2801051648 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China-Japan Friendship Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I20231570 |
| authorships[3].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Peking University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengmei Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pharmacy Administration, Clinical Pharmacy School of Pharmaceutical Sciences, Peking University, Beijing, China., Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[4].author.id | https://openalex.org/A5101473460 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1368-4304 |
| authorships[4].author.display_name | Xiaoxing Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2801051648 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| authorships[4].institutions[0].id | https://openalex.org/I2801051648 |
| authorships[4].institutions[0].ror | https://ror.org/037cjxp13 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2801051648 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China-Japan Friendship Hospital |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xiaoxing Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of artificial intelligence and machine learning in lung transplantation: a comprehensive review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11189 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Transplantation: Methods and Outcomes |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4312407344, https://openalex.org/W1524112221 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fdgth.2025.1583490 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210170686 |
| best_oa_location.source.issn | 2673-253X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-253X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Digital Health |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fdgth.2025.1583490 |
| primary_location.id | doi:10.3389/fdgth.2025.1583490 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210170686 |
| primary_location.source.issn | 2673-253X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-253X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1583490/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Digital Health |
| primary_location.landing_page_url | https://doi.org/10.3389/fdgth.2025.1583490 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3183806681, https://openalex.org/W4387166035, https://openalex.org/W4376959749, https://openalex.org/W2974160374, https://openalex.org/W3165475032, https://openalex.org/W4226232428, https://openalex.org/W4280534812, https://openalex.org/W4293565029, https://openalex.org/W4385708726, https://openalex.org/W4366088554, https://openalex.org/W2027792062, https://openalex.org/W2280330931, https://openalex.org/W2589951363, https://openalex.org/W2801755799, https://openalex.org/W4206172504, https://openalex.org/W4286762122, https://openalex.org/W2890354882, https://openalex.org/W4300538972, https://openalex.org/W2169380124, https://openalex.org/W2021393639, https://openalex.org/W2171396456, https://openalex.org/W2043539804, https://openalex.org/W2128298506, https://openalex.org/W2476767147, https://openalex.org/W3092952101, https://openalex.org/W2110274112, https://openalex.org/W2776756540, https://openalex.org/W2044637808, https://openalex.org/W2115607942, https://openalex.org/W2806185661, https://openalex.org/W6678757208, https://openalex.org/W2050460554, https://openalex.org/W2083067632, https://openalex.org/W2127140678, https://openalex.org/W2167527394, https://openalex.org/W2044100339, https://openalex.org/W2079748904, https://openalex.org/W3024878290, https://openalex.org/W4205425310, https://openalex.org/W3081912074, https://openalex.org/W2943788047, https://openalex.org/W4319660119, https://openalex.org/W2571890433, https://openalex.org/W2748532062, https://openalex.org/W2789565895, https://openalex.org/W2913594524, https://openalex.org/W2983248093, https://openalex.org/W3031999299, https://openalex.org/W3080352065, https://openalex.org/W3083423491, https://openalex.org/W3153079368, https://openalex.org/W3164015385, https://openalex.org/W4210937574, https://openalex.org/W3182795721, https://openalex.org/W4225725601, https://openalex.org/W4200125441, https://openalex.org/W4283786317, https://openalex.org/W4296627543, https://openalex.org/W4388946641, https://openalex.org/W4390590668, https://openalex.org/W4391750817, https://openalex.org/W4384501887, https://openalex.org/W4401690391, https://openalex.org/W2073264366, https://openalex.org/W2738002757, https://openalex.org/W1990526178, https://openalex.org/W4366606780, https://openalex.org/W2793667675, https://openalex.org/W2027144549, https://openalex.org/W2013149440, https://openalex.org/W2075223570, https://openalex.org/W2090863391, https://openalex.org/W1672444070, https://openalex.org/W2471023686, https://openalex.org/W2618954006, https://openalex.org/W1588130661, https://openalex.org/W2034264356, https://openalex.org/W4200602277, https://openalex.org/W3012362319, https://openalex.org/W2892500428, https://openalex.org/W2933321059, https://openalex.org/W2328820789, https://openalex.org/W1972374016, https://openalex.org/W2128111847, https://openalex.org/W2021153758, https://openalex.org/W2089676172, https://openalex.org/W2084341220, https://openalex.org/W4306169230, https://openalex.org/W2141895973, https://openalex.org/W4396990683, https://openalex.org/W4372279220, https://openalex.org/W2163048132, https://openalex.org/W4225381259, https://openalex.org/W4311556795, https://openalex.org/W4324020214, https://openalex.org/W4390699680, https://openalex.org/W1450636145, https://openalex.org/W2295781804, https://openalex.org/W2133752730, https://openalex.org/W4245556176, https://openalex.org/W1964295582, https://openalex.org/W2757825312, https://openalex.org/W1977090856, https://openalex.org/W2048776017, https://openalex.org/W3092990902, https://openalex.org/W4402924370, https://openalex.org/W4386307515, https://openalex.org/W4389145409, https://openalex.org/W2981731882, https://openalex.org/W3125069671, https://openalex.org/W2910890213, https://openalex.org/W4400334621, https://openalex.org/W4289781034, https://openalex.org/W2940562610, https://openalex.org/W2953139536 |
| referenced_works_count | 115 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.AI | 137 |
| abstract_inverted_index.ML | 139 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 34, 109 |
| abstract_inverted_index.in | 50, 104, 120 |
| abstract_inverted_index.is | 3, 18 |
| abstract_inverted_index.of | 14, 63, 68, 72, 76, 82, 84, 89, 95, 114, 147, 153 |
| abstract_inverted_index.so | 135 |
| abstract_inverted_index.to | 57 |
| abstract_inverted_index.LTx | 148 |
| abstract_inverted_index.The | 12 |
| abstract_inverted_index.and | 27, 40, 45, 55, 60, 78, 86, 112, 123, 125, 133, 138, 149 |
| abstract_inverted_index.can | 140 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.the | 66, 93, 110, 121, 144 |
| abstract_inverted_index.(AI) | 44 |
| abstract_inverted_index.(ML) | 48 |
| abstract_inverted_index.LTx, | 64 |
| abstract_inverted_index.Lung | 0 |
| abstract_inverted_index.data | 32, 54 |
| abstract_inverted_index.face | 101 |
| abstract_inverted_index.lung | 10, 15 |
| abstract_inverted_index.more | 141 |
| abstract_inverted_index.rate | 146 |
| abstract_inverted_index.such | 33, 52, 108 |
| abstract_inverted_index.that | 23, 136 |
| abstract_inverted_index.(LTx) | 2 |
| abstract_inverted_index.These | 128 |
| abstract_inverted_index.data, | 37 |
| abstract_inverted_index.donor | 73 |
| abstract_inverted_index.early | 87 |
| abstract_inverted_index.excel | 49 |
| abstract_inverted_index.graft | 79 |
| abstract_inverted_index.legal | 124 |
| abstract_inverted_index.life, | 85 |
| abstract_inverted_index.life. | 154 |
| abstract_inverted_index.model | 116 |
| abstract_inverted_index.organ | 69 |
| abstract_inverted_index.these | 99 |
| abstract_inverted_index.trust | 119 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.omics. | 41 |
| abstract_inverted_index.complex | 53 |
| abstract_inverted_index.enhance | 143 |
| abstract_inverted_index.ethical | 126 |
| abstract_inverted_index.further | 131 |
| abstract_inverted_index.improve | 150 |
| abstract_inverted_index.issues. | 127 |
| abstract_inverted_index.machine | 46 |
| abstract_inverted_index.patient | 77 |
| abstract_inverted_index.phases, | 29 |
| abstract_inverted_index.process | 22 |
| abstract_inverted_index.quality | 83, 111, 152 |
| abstract_inverted_index.require | 130 |
| abstract_inverted_index.success | 145 |
| abstract_inverted_index.thereby | 91 |
| abstract_inverted_index.However, | 98 |
| abstract_inverted_index.clinical | 36, 96, 106 |
| abstract_inverted_index.complex, | 20 |
| abstract_inverted_index.disease. | 11 |
| abstract_inverted_index.handling | 51 |
| abstract_inverted_index.imaging, | 39 |
| abstract_inverted_index.involves | 24 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.numerous | 102 |
| abstract_inverted_index.problems | 129 |
| abstract_inverted_index.research | 132 |
| abstract_inverted_index.treating | 8 |
| abstract_inverted_index.datasets, | 115 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.end-stage | 9 |
| abstract_inverted_index.enhancing | 92 |
| abstract_inverted_index.including | 65 |
| abstract_inverted_index.patients' | 151 |
| abstract_inverted_index.survival, | 80 |
| abstract_inverted_index.Artificial | 42 |
| abstract_inverted_index.assessment | 59, 71 |
| abstract_inverted_index.challenges | 103 |
| abstract_inverted_index.contribute | 56 |
| abstract_inverted_index.evaluation | 81 |
| abstract_inverted_index.management | 13, 62 |
| abstract_inverted_index.pathology, | 38 |
| abstract_inverted_index.prediction | 75 |
| abstract_inverted_index.real-world | 105 |
| abstract_inverted_index.recipients | 17 |
| abstract_inverted_index.resolution | 134 |
| abstract_inverted_index.transplant | 16 |
| abstract_inverted_index.allocation, | 70 |
| abstract_inverted_index.effectively | 142 |
| abstract_inverted_index.integrating | 30 |
| abstract_inverted_index.multi-stage | 21 |
| abstract_inverted_index.physicians' | 118 |
| abstract_inverted_index.reliability | 113 |
| abstract_inverted_index.technology, | 122 |
| abstract_inverted_index.intelligence | 43 |
| abstract_inverted_index.optimization | 67 |
| abstract_inverted_index.preoperative | 58 |
| abstract_inverted_index.suitability, | 74 |
| abstract_inverted_index.technologies | 100 |
| abstract_inverted_index.applications, | 107 |
| abstract_inverted_index.demographics, | 35 |
| abstract_inverted_index.postoperative | 28, 61 |
| abstract_inverted_index.preoperative, | 25 |
| abstract_inverted_index.complications, | 90 |
| abstract_inverted_index.identification | 88 |
| abstract_inverted_index.intraoperative, | 26 |
| abstract_inverted_index.personalization | 94 |
| abstract_inverted_index.transplantation | 1 |
| abstract_inverted_index.decision-making. | 97 |
| abstract_inverted_index.multidimensional | 31 |
| abstract_inverted_index.interpretability, | 117 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.9797798 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |