Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain Article Swipe
Thomas Deprest
,
Lucas Fidon
,
Frederik De Keyzer
,
Michael Ebner
,
Jan Deprest
,
Philippe Demaerel
,
Luc De Catte
,
Tom Vercauteren
,
Sébastien Ourselin
,
Steven Dymarkowski
,
Michaël Aertsen
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3174/ajnr.a7808
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3174/ajnr.a7808
Our novel segmentation algorithm obtained excellent results on MR images of fetuses with severe brain abnormalities. Analysis of the outliers shows the need to include pathologies underrepresented in the current data set. Quality control to prevent occasional errors is still needed.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3174/ajnr.a7808
- OA Status
- hybrid
- Cited By
- 5
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323036703
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323036703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3174/ajnr.a7808Digital Object Identifier
- Title
-
Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal BrainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-02Full publication date if available
- Authors
-
Thomas Deprest, Lucas Fidon, Frederik De Keyzer, Michael Ebner, Jan Deprest, Philippe Demaerel, Luc De Catte, Tom Vercauteren, Sébastien Ourselin, Steven Dymarkowski, Michaël AertsenList of authors in order
- Landing page
-
https://doi.org/10.3174/ajnr.a7808Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3174/ajnr.a7808Direct OA link when available
- Concepts
-
Medicine, Segmentation, Artificial intelligence, Resolution (logic), Fetus, Computer vision, Anatomy, Pattern recognition (psychology), Radiology, Nuclear medicine, Pregnancy, Computer science, Genetics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323036703 |
|---|---|
| doi | https://doi.org/10.3174/ajnr.a7808 |
| ids.doi | https://doi.org/10.3174/ajnr.a7808 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36863845 |
| ids.openalex | https://openalex.org/W4323036703 |
| fwci | 8.83179327 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D012189 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Retrospective Studies |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D007091 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Image Processing, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001927 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Brain Diseases |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D066127 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | White Matter |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D008279 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Magnetic Resonance Imaging |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012189 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Retrospective Studies |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D007091 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Image Processing, Computer-Assisted |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D001927 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Brain Diseases |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D066127 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | White Matter |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D008279 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Magnetic Resonance Imaging |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012189 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Retrospective Studies |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D007091 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Image Processing, Computer-Assisted |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D001927 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Brain Diseases |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D066127 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | White Matter |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D008279 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Magnetic Resonance Imaging |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D012189 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Retrospective Studies |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D007091 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Image Processing, Computer-Assisted |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D016571 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Neural Networks, Computer |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D001927 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Brain Diseases |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D066127 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | White Matter |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D008279 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Magnetic Resonance Imaging |
| type | article |
| title | Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain |
| biblio.issue | 4 |
| biblio.volume | 44 |
| biblio.last_page | 491 |
| biblio.first_page | 486 |
| topics[0].id | https://openalex.org/T12552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2735 |
| topics[0].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[0].display_name | Fetal and Pediatric Neurological Disorders |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9402999877929688 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11885 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9373000264167786 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | MRI in cancer diagnosis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8216138482093811 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5985555648803711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4966893792152405 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C138268822 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48205193877220154 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[3].display_name | Resolution (logic) |
| concepts[4].id | https://openalex.org/C172680121 |
| concepts[4].level | 3 |
| concepts[4].score | 0.45923030376434326 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q26513 |
| concepts[4].display_name | Fetus |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3677094280719757 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C105702510 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34848469495773315 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[6].display_name | Anatomy |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.34173160791397095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32687193155288696 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C2989005 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32357460260391235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[9].display_name | Nuclear medicine |
| concepts[10].id | https://openalex.org/C2779234561 |
| concepts[10].level | 2 |
| concepts[10].score | 0.17301824688911438 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[10].display_name | Pregnancy |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09415742754936218 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8216138482093811 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.5985555648803711 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4966893792152405 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/resolution |
| keywords[3].score | 0.48205193877220154 |
| keywords[3].display_name | Resolution (logic) |
| keywords[4].id | https://openalex.org/keywords/fetus |
| keywords[4].score | 0.45923030376434326 |
| keywords[4].display_name | Fetus |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3677094280719757 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/anatomy |
| keywords[6].score | 0.34848469495773315 |
| keywords[6].display_name | Anatomy |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.34173160791397095 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.32687193155288696 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[9].score | 0.32357460260391235 |
| keywords[9].display_name | Nuclear medicine |
| keywords[10].id | https://openalex.org/keywords/pregnancy |
| keywords[10].score | 0.17301824688911438 |
| keywords[10].display_name | Pregnancy |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.09415742754936218 |
| keywords[11].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.3174/ajnr.a7808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101278519 |
| locations[0].source.issn | 0195-6108, 1936-959X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0195-6108 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | American Journal of Neuroradiology |
| locations[0].source.host_organization | https://openalex.org/P4310316165 |
| locations[0].source.host_organization_name | American Society of Neuroradiology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316165 |
| locations[0].source.host_organization_lineage_names | American Society of Neuroradiology |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | American Journal of Neuroradiology |
| locations[0].landing_page_url | https://doi.org/10.3174/ajnr.a7808 |
| locations[1].id | pmid:36863845 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | AJNR. American journal of neuroradiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36863845 |
| locations[2].id | pmh:oai:lirias2repo.kuleuven.be:20.500.12942/725160 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401954 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Lirias (KU Leuven) |
| locations[2].source.host_organization | https://openalex.org/I99464096 |
| locations[2].source.host_organization_name | KU Leuven |
| locations[2].source.host_organization_lineage | https://openalex.org/I99464096 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://lirias.kuleuven.be/handle/20.500.12942/725160 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:10084897 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10084897/pdf/zj4486.pdf |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | AJNR Am J Neuroradiol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10084897 |
| locations[4].id | pmh:oai:kclpure.kcl.ac.uk:publications/aac09f8f-fe9a-4341-b2a6-c6e57f228cd5 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Deprest , T , Fidon , L , De Keyzer , F , Ebner , M , Deprest , J , Demaerel , P , De Catte , L , Vercauteren , T , Ourselin , S , Dymarkowski , S & Aertsen , M 2023 , ' Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain ' , AJNR. American journal of neuroradiology , vol. 44 , no. 4 , pp. 486-491 . https://doi.org/10.3174/ajnr.A7808 |
| locations[4].landing_page_url | https://kclpure.kcl.ac.uk/portal/en/publications/aac09f8f-fe9a-4341-b2a6-c6e57f228cd5 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5006331855 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9196-9807 |
| authorships[0].author.display_name | Thomas Deprest |
| authorships[0].affiliations[0].raw_affiliation_string | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | T. Deprest |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[1].author.id | https://openalex.org/A5031248347 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1450-1634 |
| authorships[1].author.display_name | Lucas Fidon |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[1].affiliations[0].raw_affiliation_string | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I183935753 |
| authorships[1].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | King's College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | L. Fidon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[2].author.id | https://openalex.org/A5023429180 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1855-3274 |
| authorships[2].author.display_name | Frederik De Keyzer |
| authorships[2].affiliations[0].raw_affiliation_string | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | F. De Keyzer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[3].author.id | https://openalex.org/A5045321937 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0170-7062 |
| authorships[3].author.display_name | Michael Ebner |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | eDepartment of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I183935753 |
| authorships[3].affiliations[1].raw_affiliation_string | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[3].institutions[0].id | https://openalex.org/I183935753 |
| authorships[3].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | King's College London |
| authorships[3].institutions[1].id | https://openalex.org/I45129253 |
| authorships[3].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | M. Ebner |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK, eDepartment of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK |
| authorships[4].author.id | https://openalex.org/A5079918230 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4920-945X |
| authorships[4].author.display_name | Jan Deprest |
| authorships[4].countries | BE |
| authorships[4].affiliations[0].raw_affiliation_string | dInstitute for Women's Health (J.D.) |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I99464096 |
| authorships[4].affiliations[1].raw_affiliation_string | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium |
| authorships[4].institutions[0].id | https://openalex.org/I99464096 |
| authorships[4].institutions[0].ror | https://ror.org/05f950310 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[4].institutions[0].country_code | BE |
| authorships[4].institutions[0].display_name | KU Leuven |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | J. Deprest |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium, dInstitute for Women's Health (J.D.) |
| authorships[5].author.id | https://openalex.org/A5048201812 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6678-0519 |
| authorships[5].author.display_name | Philippe Demaerel |
| authorships[5].affiliations[0].raw_affiliation_string | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | P. Demaerel |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[6].author.id | https://openalex.org/A5054542036 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5287-9673 |
| authorships[6].author.display_name | Luc De Catte |
| authorships[6].countries | BE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I99464096 |
| authorships[6].affiliations[0].raw_affiliation_string | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium |
| authorships[6].institutions[0].id | https://openalex.org/I99464096 |
| authorships[6].institutions[0].ror | https://ror.org/05f950310 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[6].institutions[0].country_code | BE |
| authorships[6].institutions[0].display_name | KU Leuven |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | L. De Catte |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium |
| authorships[7].author.id | https://openalex.org/A5028279799 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1794-0456 |
| authorships[7].author.display_name | Tom Vercauteren |
| authorships[7].countries | BE, GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[7].affiliations[0].raw_affiliation_string | eDepartment of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I99464096 |
| authorships[7].affiliations[1].raw_affiliation_string | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I183935753 |
| authorships[7].affiliations[2].raw_affiliation_string | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[7].institutions[0].id | https://openalex.org/I99464096 |
| authorships[7].institutions[0].ror | https://ror.org/05f950310 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[7].institutions[0].country_code | BE |
| authorships[7].institutions[0].display_name | KU Leuven |
| authorships[7].institutions[1].id | https://openalex.org/I183935753 |
| authorships[7].institutions[1].ror | https://ror.org/0220mzb33 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[7].institutions[1].country_code | GB |
| authorships[7].institutions[1].display_name | King's College London |
| authorships[7].institutions[2].id | https://openalex.org/I45129253 |
| authorships[7].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[7].institutions[2].type | education |
| authorships[7].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[7].institutions[2].country_code | GB |
| authorships[7].institutions[2].display_name | University College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | T. Vercauteren |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | bGynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium, cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK, eDepartment of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK |
| authorships[8].author.id | https://openalex.org/A5082106258 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5694-5340 |
| authorships[8].author.display_name | Sébastien Ourselin |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[8].affiliations[0].raw_affiliation_string | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[8].institutions[0].id | https://openalex.org/I183935753 |
| authorships[8].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | King's College London |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | S. Ourselin |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | cSchool of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK |
| authorships[9].author.id | https://openalex.org/A5040620270 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1550-1524 |
| authorships[9].author.display_name | Steven Dymarkowski |
| authorships[9].affiliations[0].raw_affiliation_string | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | S. Dymarkowski |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[10].author.id | https://openalex.org/A5035865500 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1994-5365 |
| authorships[10].author.display_name | Michaël Aertsen |
| authorships[10].affiliations[0].raw_affiliation_string | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | M. Aertsen |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | aFrom the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3174/ajnr.a7808 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2735 |
| primary_topic.subfield.display_name | Pediatrics, Perinatology and Child Health |
| primary_topic.display_name | Fetal and Pediatric Neurological Disorders |
| related_works | https://openalex.org/W22971176, https://openalex.org/W1980685318, https://openalex.org/W2028067405, https://openalex.org/W1963927723, https://openalex.org/W1968596735, https://openalex.org/W3111777359, https://openalex.org/W4379231730, https://openalex.org/W2052576884, https://openalex.org/W3028027754, https://openalex.org/W1590935563 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3174/ajnr.a7808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101278519 |
| best_oa_location.source.issn | 0195-6108, 1936-959X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0195-6108 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | American Journal of Neuroradiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310316165 |
| best_oa_location.source.host_organization_name | American Society of Neuroradiology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316165 |
| best_oa_location.source.host_organization_lineage_names | American Society of Neuroradiology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | American Journal of Neuroradiology |
| best_oa_location.landing_page_url | https://doi.org/10.3174/ajnr.a7808 |
| primary_location.id | doi:10.3174/ajnr.a7808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101278519 |
| primary_location.source.issn | 0195-6108, 1936-959X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0195-6108 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | American Journal of Neuroradiology |
| primary_location.source.host_organization | https://openalex.org/P4310316165 |
| primary_location.source.host_organization_name | American Society of Neuroradiology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316165 |
| primary_location.source.host_organization_lineage_names | American Society of Neuroradiology |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | American Journal of Neuroradiology |
| primary_location.landing_page_url | https://doi.org/10.3174/ajnr.a7808 |
| publication_date | 2023-03-02 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2114499383, https://openalex.org/W2989249732, https://openalex.org/W2166966312, https://openalex.org/W2135264048, https://openalex.org/W2024251722, https://openalex.org/W1994514622, https://openalex.org/W2041162236, https://openalex.org/W2592929672, https://openalex.org/W2621028221, https://openalex.org/W2733375200, https://openalex.org/W2949461491, https://openalex.org/W4253809105, https://openalex.org/W2981084076, https://openalex.org/W2564590721, https://openalex.org/W3204458084, https://openalex.org/W2039600900, https://openalex.org/W2127890285, https://openalex.org/W2132513126, https://openalex.org/W3194057459, https://openalex.org/W3205540388, https://openalex.org/W2055190078, https://openalex.org/W6676859046, https://openalex.org/W2112226928, https://openalex.org/W4293740873 |
| referenced_works_count | 24 |
| abstract_inverted_index.MR | 8 |
| abstract_inverted_index.in | 27 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.of | 10, 17 |
| abstract_inverted_index.on | 7 |
| abstract_inverted_index.to | 23, 34 |
| abstract_inverted_index.Our | 0 |
| abstract_inverted_index.the | 18, 21, 28 |
| abstract_inverted_index.data | 30 |
| abstract_inverted_index.need | 22 |
| abstract_inverted_index.set. | 31 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.brain | 14 |
| abstract_inverted_index.novel | 1 |
| abstract_inverted_index.shows | 20 |
| abstract_inverted_index.still | 39 |
| abstract_inverted_index.errors | 37 |
| abstract_inverted_index.images | 9 |
| abstract_inverted_index.severe | 13 |
| abstract_inverted_index.Quality | 32 |
| abstract_inverted_index.control | 33 |
| abstract_inverted_index.current | 29 |
| abstract_inverted_index.fetuses | 11 |
| abstract_inverted_index.include | 24 |
| abstract_inverted_index.needed. | 40 |
| abstract_inverted_index.prevent | 35 |
| abstract_inverted_index.results | 6 |
| abstract_inverted_index.Analysis | 16 |
| abstract_inverted_index.obtained | 4 |
| abstract_inverted_index.outliers | 19 |
| abstract_inverted_index.algorithm | 3 |
| abstract_inverted_index.excellent | 5 |
| abstract_inverted_index.occasional | 36 |
| abstract_inverted_index.pathologies | 25 |
| abstract_inverted_index.segmentation | 2 |
| abstract_inverted_index.abnormalities. | 15 |
| abstract_inverted_index.underrepresented | 26 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.91201998 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |