Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/min15070760
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/min15070760
- https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853
- OA Status
- gold
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412518282
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412518282Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/min15070760Digital Object Identifier
- Title
-
Application of Clustering Methods in Multivariate Data-Based Prospecting PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-20Full publication date if available
- Authors
-
Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren, Xiang ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/min15070760Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853Direct OA link when available
- Concepts
-
Prospecting, Multivariate statistics, Cluster analysis, Computer science, Multivariate analysis, Data mining, Geology, Artificial intelligence, Mining engineering, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412518282 |
|---|---|
| doi | https://doi.org/10.3390/min15070760 |
| ids.doi | https://doi.org/10.3390/min15070760 |
| ids.openalex | https://openalex.org/W4412518282 |
| fwci | 4.81974515 |
| type | article |
| title | Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction |
| biblio.issue | 7 |
| biblio.volume | 15 |
| biblio.last_page | 760 |
| biblio.first_page | 760 |
| topics[0].id | https://openalex.org/T12157 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Geochemistry and Geologic Mapping |
| topics[1].id | https://openalex.org/T10770 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9858999848365784 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Soil Geostatistics and Mapping |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9679999947547913 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C175181221 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8040635585784912 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1650350 |
| concepts[0].display_name | Prospecting |
| concepts[1].id | https://openalex.org/C161584116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6970185041427612 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[1].display_name | Multivariate statistics |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6593576073646545 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4768751263618469 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C38180746 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43404120206832886 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[4].display_name | Multivariate analysis |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4335879683494568 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3090359568595886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2602543234825134 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C16674752 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22773608565330505 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1370637 |
| concepts[8].display_name | Mining engineering |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1751483976840973 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/prospecting |
| keywords[0].score | 0.8040635585784912 |
| keywords[0].display_name | Prospecting |
| keywords[1].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[1].score | 0.6970185041427612 |
| keywords[1].display_name | Multivariate statistics |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6593576073646545 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4768751263618469 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/multivariate-analysis |
| keywords[4].score | 0.43404120206832886 |
| keywords[4].display_name | Multivariate analysis |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4335879683494568 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3090359568595886 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2602543234825134 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mining-engineering |
| keywords[8].score | 0.22773608565330505 |
| keywords[8].display_name | Mining engineering |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.1751483976840973 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/min15070760 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737336974 |
| locations[0].source.issn | 2075-163X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-163X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Minerals |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Minerals |
| locations[0].landing_page_url | https://doi.org/10.3390/min15070760 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078051556 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiaopeng Chang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Geophysics and Information Technology, China University of Geosciences, Beijing 100830, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I2799486974 |
| authorships[0].affiliations[1].raw_affiliation_string | Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| authorships[0].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[0].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[0].institutions[0].type | other |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Geological Survey |
| authorships[0].institutions[1].id | https://openalex.org/I3125743391 |
| authorships[0].institutions[1].ror | https://ror.org/04q6c7p66 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I3125743391 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | China University of Geosciences (Beijing) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaopeng Chang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Geophysics and Information Technology, China University of Geosciences, Beijing 100830, China, Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| authorships[1].author.id | https://openalex.org/A5103549458 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2295-5628 |
| authorships[1].author.display_name | Minghua Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Geophysics and Information Technology, China University of Geosciences, Beijing 100830, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2799486974 |
| authorships[1].affiliations[1].raw_affiliation_string | Natural Resources Survey, China Geological Survey, Beijing 100830, China |
| authorships[1].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[1].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Geological Survey |
| authorships[1].institutions[1].id | https://openalex.org/I3125743391 |
| authorships[1].institutions[1].ror | https://ror.org/04q6c7p66 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I3125743391 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | China University of Geosciences (Beijing) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minghua Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Natural Resources Survey, China Geological Survey, Beijing 100830, China, School of Geophysics and Information Technology, China University of Geosciences, Beijing 100830, China |
| authorships[2].author.id | https://openalex.org/A5115590703 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-2899-8997 |
| authorships[2].author.display_name | Liang Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2799486974 |
| authorships[2].affiliations[0].raw_affiliation_string | Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| authorships[2].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[2].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[2].institutions[0].type | other |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Geological Survey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liang Chen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| authorships[3].author.id | https://openalex.org/A5100394038 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0462-6724 |
| authorships[3].author.display_name | Sheng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2799486974 |
| authorships[3].affiliations[0].raw_affiliation_string | Natural Resources Survey, China Geological Survey, Beijing 100830, China |
| authorships[3].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[3].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Geological Survey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sheng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Natural Resources Survey, China Geological Survey, Beijing 100830, China |
| authorships[4].author.id | https://openalex.org/A5082396376 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-9498-5205 |
| authorships[4].author.display_name | Wei Ren |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2799486974 |
| authorships[4].affiliations[0].raw_affiliation_string | Natural Resources Survey, China Geological Survey, Beijing 100830, China |
| authorships[4].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[4].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[4].institutions[0].type | other |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Geological Survey |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei Ren |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Natural Resources Survey, China Geological Survey, Beijing 100830, China |
| authorships[5].author.id | https://openalex.org/A5100368865 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5201-3802 |
| authorships[5].author.display_name | Xiang Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2799486974 |
| authorships[5].affiliations[0].raw_affiliation_string | Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| authorships[5].institutions[0].id | https://openalex.org/I2799486974 |
| authorships[5].institutions[0].ror | https://ror.org/04wtq2305 |
| authorships[5].institutions[0].type | other |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799486974 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Geological Survey |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xiang Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12157 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Geochemistry and Geologic Mapping |
| related_works | https://openalex.org/W2406638334, https://openalex.org/W40745829, https://openalex.org/W4318262572, https://openalex.org/W1978357124, https://openalex.org/W1578824628, https://openalex.org/W2032728545, https://openalex.org/W1570805059, https://openalex.org/W4250754046, https://openalex.org/W4243682621, https://openalex.org/W2036849593 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/min15070760 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737336974 |
| best_oa_location.source.issn | 2075-163X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-163X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Minerals |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Minerals |
| best_oa_location.landing_page_url | https://doi.org/10.3390/min15070760 |
| primary_location.id | doi:10.3390/min15070760 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737336974 |
| primary_location.source.issn | 2075-163X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-163X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Minerals |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-163X/15/7/760/pdf?version=1752983853 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Minerals |
| primary_location.landing_page_url | https://doi.org/10.3390/min15070760 |
| publication_date | 2025-07-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6982016993, https://openalex.org/W7019400180, https://openalex.org/W2152467495, https://openalex.org/W2749907801, https://openalex.org/W2058368768, https://openalex.org/W2502653294, https://openalex.org/W1991285842, https://openalex.org/W4200177104, https://openalex.org/W2147570347, https://openalex.org/W1025143415, https://openalex.org/W4232093100, https://openalex.org/W4376478593, https://openalex.org/W2113504390, https://openalex.org/W2751097656, https://openalex.org/W2159469384, https://openalex.org/W3186644339, https://openalex.org/W2059574859, https://openalex.org/W6796917208, https://openalex.org/W2052611179, https://openalex.org/W2016381774, https://openalex.org/W4327576854, https://openalex.org/W2355681162, https://openalex.org/W4403828331, https://openalex.org/W3172188205, https://openalex.org/W2351240351, https://openalex.org/W2375016939 |
| referenced_works_count | 26 |
| abstract_inverted_index.3 | 155 |
| abstract_inverted_index.a | 11, 159, 184 |
| abstract_inverted_index.(3 | 142 |
| abstract_inverted_index.(4 | 146 |
| abstract_inverted_index.13 | 94 |
| abstract_inverted_index.4) | 144, 148 |
| abstract_inverted_index.F1 | 176 |
| abstract_inverted_index.F2 | 178 |
| abstract_inverted_index.F3 | 181 |
| abstract_inverted_index.In | 58, 138 |
| abstract_inverted_index.an | 29 |
| abstract_inverted_index.as | 7, 158 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 32, 69, 175, 216 |
| abstract_inverted_index.is | 28, 110 |
| abstract_inverted_index.of | 14, 56, 73, 195, 208 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 66, 112, 166 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.× | 143, 147 |
| abstract_inverted_index.(i) | 78 |
| abstract_inverted_index.TSC | 64, 203 |
| abstract_inverted_index.The | 36, 105 |
| abstract_inverted_index.and | 1, 9, 47, 50, 82, 91, 115, 131, 145, 172, 180, 210, 220 |
| abstract_inverted_index.big | 15 |
| abstract_inverted_index.by: | 77 |
| abstract_inverted_index.due | 165 |
| abstract_inverted_index.for | 162, 199, 204, 223 |
| abstract_inverted_index.its | 167, 214, 221 |
| abstract_inverted_index.key | 12 |
| abstract_inverted_index.low | 170 |
| abstract_inverted_index.the | 53, 63, 70, 74, 141, 173, 193, 205 |
| abstract_inverted_index.was | 156 |
| abstract_inverted_index.(ii) | 92 |
| abstract_inverted_index.This | 190 |
| abstract_inverted_index.Ward | 89, 197 |
| abstract_inverted_index.When | 121 |
| abstract_inverted_index.also | 134 |
| abstract_inverted_index.both | 45 |
| abstract_inverted_index.data | 34, 218 |
| abstract_inverted_index.from | 4 |
| abstract_inverted_index.gold | 163 |
| abstract_inverted_index.into | 85, 98 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.this | 59, 139 |
| abstract_inverted_index.with | 118, 202 |
| abstract_inverted_index.zone | 161 |
| abstract_inverted_index.(TSC) | 39 |
| abstract_inverted_index.Basin | 76 |
| abstract_inverted_index.based | 24 |
| abstract_inverted_index.data, | 212 |
| abstract_inverted_index.fewer | 119 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.share | 123 |
| abstract_inverted_index.study | 191 |
| abstract_inverted_index.using | 88 |
| abstract_inverted_index.value | 215 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.Mining | 0 |
| abstract_inverted_index.aspect | 13 |
| abstract_inverted_index.better | 117 |
| abstract_inverted_index.factor | 103 |
| abstract_inverted_index.groups | 21 |
| abstract_inverted_index.margin | 72 |
| abstract_inverted_index.method | 31, 65 |
| abstract_inverted_index.number | 55 |
| abstract_inverted_index.offers | 41 |
| abstract_inverted_index.showed | 107 |
| abstract_inverted_index.stream | 95 |
| abstract_inverted_index.study, | 60, 140 |
| abstract_inverted_index.Cluster | 154 |
| abstract_inverted_index.Jiaolai | 75 |
| abstract_inverted_index.applied | 62 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.further | 224 |
| abstract_inverted_index.gravity | 81 |
| abstract_inverted_index.mineral | 17, 67 |
| abstract_inverted_index.optimal | 54, 151 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.similar | 124 |
| abstract_inverted_index.through | 102 |
| abstract_inverted_index.yielded | 150 |
| abstract_inverted_index.Two-Step | 37 |
| abstract_inverted_index.analysis | 207 |
| abstract_inverted_index.approach | 40 |
| abstract_inverted_index.datasets | 23 |
| abstract_inverted_index.deposits | 164 |
| abstract_inverted_index.distance | 26 |
| abstract_inverted_index.elements | 97 |
| abstract_inverted_index.gravity, | 169 |
| abstract_inverted_index.handling | 44 |
| abstract_inverted_index.magnetic | 83 |
| abstract_inverted_index.metrics, | 27 |
| abstract_inverted_index.moderate | 168 |
| abstract_inverted_index.multiple | 5 |
| abstract_inverted_index.performs | 116 |
| abstract_inverted_index.process. | 189 |
| abstract_inverted_index.research | 219 |
| abstract_inverted_index.residual | 80 |
| abstract_inverted_index.results. | 137, 153 |
| abstract_inverted_index.sediment | 96 |
| abstract_inverted_index.shallow, | 186 |
| abstract_inverted_index.variable | 200 |
| abstract_inverted_index.analysis. | 35, 104 |
| abstract_inverted_index.analyzing | 2 |
| abstract_inverted_index.anomalies | 84 |
| abstract_inverted_index.clusters. | 57 |
| abstract_inverted_index.combining | 196 |
| abstract_inverted_index.essential | 30 |
| abstract_inverted_index.favorable | 160 |
| abstract_inverted_index.numerical | 211 |
| abstract_inverted_index.potential | 222 |
| abstract_inverted_index.sensitive | 111 |
| abstract_inverted_index.variables | 49, 87, 101, 114, 122 |
| abstract_inverted_index.(As–Sb), | 182 |
| abstract_inverted_index.Clustering | 38 |
| abstract_inverted_index.advantages | 42 |
| abstract_inverted_index.boundaries | 133 |
| abstract_inverted_index.clustering | 109, 136, 152, 198 |
| abstract_inverted_index.confirming | 213 |
| abstract_inverted_index.continuous | 48, 100 |
| abstract_inverted_index.converting | 79 |
| abstract_inverted_index.enrichment | 174 |
| abstract_inverted_index.geophysics | 8 |
| abstract_inverted_index.identified | 157 |
| abstract_inverted_index.indicating | 183 |
| abstract_inverted_index.influences | 135 |
| abstract_inverted_index.integrated | 206 |
| abstract_inverted_index.magnetism, | 171 |
| abstract_inverted_index.prediction | 68 |
| abstract_inverted_index.Clustering, | 19 |
| abstract_inverted_index.categorical | 46, 86, 113, 209 |
| abstract_inverted_index.categories. | 120 |
| abstract_inverted_index.clustering; | 90 |
| abstract_inverted_index.consistency | 127 |
| abstract_inverted_index.data-driven | 16 |
| abstract_inverted_index.determining | 52 |
| abstract_inverted_index.geochemical | 132 |
| abstract_inverted_index.geophysical | 129 |
| abstract_inverted_index.independent | 99 |
| abstract_inverted_index.information | 3 |
| abstract_inverted_index.prediction. | 18 |
| abstract_inverted_index.application. | 225 |
| abstract_inverted_index.combinations | 149 |
| abstract_inverted_index.demonstrates | 192 |
| abstract_inverted_index.distribution | 125 |
| abstract_inverted_index.hydrothermal | 187 |
| abstract_inverted_index.multi-source | 217 |
| abstract_inverted_index.multi-stage, | 185 |
| abstract_inverted_index.northeastern | 71 |
| abstract_inverted_index.transforming | 93 |
| abstract_inverted_index.automatically | 51 |
| abstract_inverted_index.effectiveness | 194 |
| abstract_inverted_index.(W–Mo–Bi), | 179 |
| abstract_inverted_index.discretization | 130 |
| abstract_inverted_index.mineralization | 188 |
| abstract_inverted_index.sources—such | 6 |
| abstract_inverted_index.transformation | 201 |
| abstract_inverted_index.(Ni–Cu–Zn), | 177 |
| abstract_inverted_index.characteristics, | 126 |
| abstract_inverted_index.multidimensional | 33 |
| abstract_inverted_index.geochemistry—is | 10 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5115590703, https://openalex.org/A5103549458 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I2799486974, https://openalex.org/I3125743391 |
| citation_normalized_percentile.value | 0.95192965 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |