Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3748/wjg.v31.i36.111137
Gastrointestinal (GI) diseases, including gastric and colorectal cancers, significantly impact global health, necessitating accurate and efficient diagnostic methods. Endoscopic examination is the primary diagnostic tool; however, its accuracy is limited by operator dependency and interobserver variability. Advancements in deep learning, particularly convolutional neural networks (CNNs), show great potential for enhancing GI disease detection and classification. This review explores the application of CNNs in endoscopic imaging, focusing on polyp and tumor detection, disease classification, endoscopic ultrasound, and capsule endoscopy analysis. We discuss the performance of CNN models with traditional diagnostic methods, highlighting their advantages in accuracy and real-time decision support. Despite promising results, challenges remain, including data availability, model interpretability, and clinical integration. Future directions include improving model generalization, enhancing explainability, and conducting large-scale clinical trials. With continued advancements, CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection, reducing diagnostic errors, and improving patient outcomes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3748/wjg.v31.i36.111137
- OA Status
- green
- References
- 165
- OpenAlex ID
- https://openalex.org/W4414334686
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414334686Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3748/wjg.v31.i36.111137Digital Object Identifier
- Title
-
Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examinationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-18Full publication date if available
- Authors
-
Yangyang Wang, Bin Liu, Jianwei WangList of authors in order
- Landing page
-
https://doi.org/10.3748/wjg.v31.i36.111137Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/12476647Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
165Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414334686 |
|---|---|
| doi | https://doi.org/10.3748/wjg.v31.i36.111137 |
| ids.doi | https://doi.org/10.3748/wjg.v31.i36.111137 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41025070 |
| ids.openalex | https://openalex.org/W4414334686 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | Q000175 |
| mesh[2].descriptor_ui | D005767 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnosis |
| mesh[2].descriptor_name | Gastrointestinal Diseases |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D005767 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Gastrointestinal Diseases |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D016099 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Endoscopy, Gastrointestinal |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D053704 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Capsule Endoscopy |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D019160 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Endosonography |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D055088 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Early Detection of Cancer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000098415 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Convolutional Neural Networks |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000077321 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Deep Learning |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D005767 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Gastrointestinal Diseases |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D005767 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Gastrointestinal Diseases |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D016099 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Endoscopy, Gastrointestinal |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D053704 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Capsule Endoscopy |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D019160 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Endosonography |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D055088 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Early Detection of Cancer |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000098415 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Convolutional Neural Networks |
| type | article |
| title | Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination |
| biblio.issue | 36 |
| biblio.volume | 31 |
| biblio.last_page | 111137 |
| biblio.first_page | 111137 |
| topics[0].id | https://openalex.org/T10552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Colorectal Cancer Screening and Detection |
| topics[1].id | https://openalex.org/T10696 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Gastric Cancer Management and Outcomes |
| topics[2].id | https://openalex.org/T11378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2715 |
| topics[2].subfield.display_name | Gastroenterology |
| topics[2].display_name | Gastrointestinal Bleeding Diagnosis and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.3748/wjg.v31.i36.111137 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S181459644 |
| locations[0].source.issn | 1007-9327, 2219-2840 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1007-9327 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | World Journal of Gastroenterology |
| locations[0].source.host_organization | https://openalex.org/P4310315735 |
| locations[0].source.host_organization_name | Baishideng Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315735 |
| locations[0].source.host_organization_lineage_names | Baishideng Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | World Journal of Gastroenterology |
| locations[0].landing_page_url | https://doi.org/10.3748/wjg.v31.i36.111137 |
| locations[1].id | pmid:41025070 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | World journal of gastroenterology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41025070 |
| locations[2].id | pmh:oai:europepmc.org:11285287 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12476647 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100345124 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2095-5002 |
| authorships[0].author.display_name | Yangyang Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Physics and Electronic Information, Yan'an University, Yan'an 716000, Shaanxi Province, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[0].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yan'an University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang-Yang Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Physics and Electronic Information, Yan'an University, Yan'an 716000, Shaanxi Province, China. |
| authorships[1].author.id | https://openalex.org/A5049589372 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1372-6006 |
| authorships[1].author.display_name | Bin Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210160841, https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China. |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I4210160841 |
| authorships[1].institutions[1].ror | https://ror.org/05p38yh32 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210160841 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Hubei Cancer Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bin Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, Hubei Province, China. |
| authorships[2].author.id | https://openalex.org/A5100424784 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1116-4559 |
| authorships[2].author.display_name | Jianwei Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[2].affiliations[0].raw_affiliation_string | Yan'an Medical College, Yan'an University, Yan'an 716000, Shaanxi Province, China. [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[2].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Yan'an University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ji-Han Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Yan'an Medical College, Yan'an University, Yan'an 716000, Shaanxi Province, China. [email protected]. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12476647 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Colorectal Cancer Screening and Detection |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:europepmc.org:11285287 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Europe PMC (PubMed Central) |
| best_oa_location.source.host_organization | https://openalex.org/I1303153112 |
| best_oa_location.source.host_organization_name | European Bioinformatics Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1303153112 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12476647 |
| primary_location.id | doi:10.3748/wjg.v31.i36.111137 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S181459644 |
| primary_location.source.issn | 1007-9327, 2219-2840 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1007-9327 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | World Journal of Gastroenterology |
| primary_location.source.host_organization | https://openalex.org/P4310315735 |
| primary_location.source.host_organization_name | Baishideng Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315735 |
| primary_location.source.host_organization_lineage_names | Baishideng Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | World Journal of Gastroenterology |
| primary_location.landing_page_url | https://doi.org/10.3748/wjg.v31.i36.111137 |
| publication_date | 2025-09-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3190932060, https://openalex.org/W4380182425, https://openalex.org/W3164910287, https://openalex.org/W2891592698, https://openalex.org/W2564784261, https://openalex.org/W3203990162, https://openalex.org/W4390174554, https://openalex.org/W4362699220, https://openalex.org/W4392007149, https://openalex.org/W4403534199, https://openalex.org/W3045415942, https://openalex.org/W3014493065, https://openalex.org/W4285265906, https://openalex.org/W3165002024, https://openalex.org/W4213110271, https://openalex.org/W3124075084, https://openalex.org/W3135381462, https://openalex.org/W4406728218, https://openalex.org/W2966273162, https://openalex.org/W3198575996, https://openalex.org/W4388459526, https://openalex.org/W3214354536, https://openalex.org/W4306158369, https://openalex.org/W4225597912, https://openalex.org/W4401693961, https://openalex.org/W3186486777, https://openalex.org/W2560311620, https://openalex.org/W4377989430, https://openalex.org/W4318570189, https://openalex.org/W3164631742, https://openalex.org/W4393315128, https://openalex.org/W3118650257, https://openalex.org/W4323313312, https://openalex.org/W2219903032, https://openalex.org/W2253429366, https://openalex.org/W2978981352, https://openalex.org/W2550143307, https://openalex.org/W2998072408, https://openalex.org/W3048228368, https://openalex.org/W4361009418, https://openalex.org/W4307494488, https://openalex.org/W4392543815, https://openalex.org/W4220815429, https://openalex.org/W4320918913, https://openalex.org/W3200379731, https://openalex.org/W4405488617, https://openalex.org/W4382240133, https://openalex.org/W4391992303, https://openalex.org/W4386303561, https://openalex.org/W4400838127, https://openalex.org/W4380762671, https://openalex.org/W4406611826, https://openalex.org/W4392337780, https://openalex.org/W3178426815, https://openalex.org/W3011484919, https://openalex.org/W4388976895, https://openalex.org/W4392880972, https://openalex.org/W3158576835, https://openalex.org/W2948967220, https://openalex.org/W3044747827, https://openalex.org/W4294739313, https://openalex.org/W3215370831, https://openalex.org/W2952312197, https://openalex.org/W4404630516, https://openalex.org/W4405935508, https://openalex.org/W4404142367, https://openalex.org/W4292961881, https://openalex.org/W2800777678, https://openalex.org/W3217224743, https://openalex.org/W3204834285, https://openalex.org/W3092070069, https://openalex.org/W2899210047, https://openalex.org/W4394019185, https://openalex.org/W4390501709, https://openalex.org/W4396710616, https://openalex.org/W4390680608, https://openalex.org/W4394961593, https://openalex.org/W4323316289, https://openalex.org/W4383215596, https://openalex.org/W4316036258, https://openalex.org/W4297267113, https://openalex.org/W4220653466, https://openalex.org/W3196812177, https://openalex.org/W3207228697, https://openalex.org/W3091011414, https://openalex.org/W3088388199, https://openalex.org/W3117449586, https://openalex.org/W3201271102, https://openalex.org/W2970204274, https://openalex.org/W2997235526, https://openalex.org/W2914082027, https://openalex.org/W2783201053, https://openalex.org/W2785825652, https://openalex.org/W2886587217, https://openalex.org/W2789130498, https://openalex.org/W2765095566, https://openalex.org/W2291020065, https://openalex.org/W2921535297, https://openalex.org/W2858686322, https://openalex.org/W2922278676, https://openalex.org/W2922479519, https://openalex.org/W2969704006, https://openalex.org/W3003717747, https://openalex.org/W2898260073, https://openalex.org/W2949170216, https://openalex.org/W2965854171, https://openalex.org/W2895348957, https://openalex.org/W2886205008, https://openalex.org/W2955608372, https://openalex.org/W2056671998, https://openalex.org/W2147996723, https://openalex.org/W4288714127, https://openalex.org/W4387392927, https://openalex.org/W4225733929, https://openalex.org/W3134868020, https://openalex.org/W4385201571, https://openalex.org/W4316465164, https://openalex.org/W3172220288, https://openalex.org/W4313014502, https://openalex.org/W4310141817, https://openalex.org/W4310295476, https://openalex.org/W3112162693, https://openalex.org/W4390106790, https://openalex.org/W2909244736, https://openalex.org/W4389393693, https://openalex.org/W4318981189, https://openalex.org/W4212767932, https://openalex.org/W4285803981, https://openalex.org/W3035228354, https://openalex.org/W3198803296, https://openalex.org/W4298145879, https://openalex.org/W3139121236, https://openalex.org/W2898110333, https://openalex.org/W2946474601, https://openalex.org/W2604895074, https://openalex.org/W2900992792, https://openalex.org/W4403005011, https://openalex.org/W3118644848, https://openalex.org/W3112283869, https://openalex.org/W3110446773, https://openalex.org/W2802572938, https://openalex.org/W4281608696, https://openalex.org/W3090643255, https://openalex.org/W2968135754, https://openalex.org/W2969818771, https://openalex.org/W2745549613, https://openalex.org/W3127276942, https://openalex.org/W4307021774, https://openalex.org/W3035892831, https://openalex.org/W4395661655, https://openalex.org/W4223563552, https://openalex.org/W3186263744, https://openalex.org/W3112476025, https://openalex.org/W3183916124, https://openalex.org/W2980275225, https://openalex.org/W2739465613, https://openalex.org/W2982034350, https://openalex.org/W3171836018, https://openalex.org/W3140854437, https://openalex.org/W3155905884, https://openalex.org/W3126014626, https://openalex.org/W2963374347, https://openalex.org/W3094502228, https://openalex.org/W2928045706, https://openalex.org/W3127751679 |
| referenced_works_count | 165 |
| abstract_inverted_index.GI | 50, 134 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.by | 30, 136 |
| abstract_inverted_index.in | 37, 62, 93 |
| abstract_inverted_index.is | 20, 28 |
| abstract_inverted_index.of | 60, 83 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.CNN | 84 |
| abstract_inverted_index.and | 5, 14, 33, 53, 68, 75, 95, 109, 120, 144 |
| abstract_inverted_index.for | 48 |
| abstract_inverted_index.its | 26 |
| abstract_inverted_index.the | 21, 58, 81 |
| abstract_inverted_index.(GI) | 1 |
| abstract_inverted_index.CNNs | 61 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.With | 125 |
| abstract_inverted_index.data | 105 |
| abstract_inverted_index.deep | 38 |
| abstract_inverted_index.show | 45 |
| abstract_inverted_index.with | 86 |
| abstract_inverted_index.could | 132 |
| abstract_inverted_index.early | 138 |
| abstract_inverted_index.great | 46 |
| abstract_inverted_index.model | 107, 116 |
| abstract_inverted_index.polyp | 67 |
| abstract_inverted_index.their | 91 |
| abstract_inverted_index.tool; | 24 |
| abstract_inverted_index.tumor | 69 |
| abstract_inverted_index.Future | 112 |
| abstract_inverted_index.global | 10 |
| abstract_inverted_index.impact | 9 |
| abstract_inverted_index.models | 85 |
| abstract_inverted_index.neural | 42 |
| abstract_inverted_index.review | 56 |
| abstract_inverted_index.(CNNs), | 44 |
| abstract_inverted_index.Despite | 99 |
| abstract_inverted_index.capsule | 76 |
| abstract_inverted_index.discuss | 80 |
| abstract_inverted_index.disease | 51, 71, 139 |
| abstract_inverted_index.errors, | 143 |
| abstract_inverted_index.gastric | 4 |
| abstract_inverted_index.health, | 11 |
| abstract_inverted_index.include | 114 |
| abstract_inverted_index.limited | 29 |
| abstract_inverted_index.patient | 146 |
| abstract_inverted_index.primary | 22 |
| abstract_inverted_index.remain, | 103 |
| abstract_inverted_index.systems | 131 |
| abstract_inverted_index.trials. | 124 |
| abstract_inverted_index.accuracy | 27, 94 |
| abstract_inverted_index.accurate | 13 |
| abstract_inverted_index.cancers, | 7 |
| abstract_inverted_index.clinical | 110, 123 |
| abstract_inverted_index.decision | 97 |
| abstract_inverted_index.explores | 57 |
| abstract_inverted_index.focusing | 65 |
| abstract_inverted_index.however, | 25 |
| abstract_inverted_index.imaging, | 64 |
| abstract_inverted_index.methods, | 89 |
| abstract_inverted_index.methods. | 17 |
| abstract_inverted_index.networks | 43 |
| abstract_inverted_index.operator | 31 |
| abstract_inverted_index.reducing | 141 |
| abstract_inverted_index.results, | 101 |
| abstract_inverted_index.support. | 98 |
| abstract_inverted_index.analysis. | 78 |
| abstract_inverted_index.continued | 126 |
| abstract_inverted_index.detection | 52 |
| abstract_inverted_index.diseases, | 2 |
| abstract_inverted_index.efficient | 15 |
| abstract_inverted_index.endoscopy | 77, 135 |
| abstract_inverted_index.enhancing | 49, 118, 137 |
| abstract_inverted_index.improving | 115, 145 |
| abstract_inverted_index.including | 3, 104 |
| abstract_inverted_index.learning, | 39 |
| abstract_inverted_index.outcomes. | 147 |
| abstract_inverted_index.potential | 47 |
| abstract_inverted_index.promising | 100 |
| abstract_inverted_index.real-time | 96 |
| abstract_inverted_index.Endoscopic | 18 |
| abstract_inverted_index.advantages | 92 |
| abstract_inverted_index.artificial | 129 |
| abstract_inverted_index.challenges | 102 |
| abstract_inverted_index.colorectal | 6 |
| abstract_inverted_index.conducting | 121 |
| abstract_inverted_index.dependency | 32 |
| abstract_inverted_index.detection, | 70, 140 |
| abstract_inverted_index.diagnostic | 16, 23, 88, 142 |
| abstract_inverted_index.directions | 113 |
| abstract_inverted_index.endoscopic | 63, 73 |
| abstract_inverted_index.CNN-powered | 128 |
| abstract_inverted_index.application | 59 |
| abstract_inverted_index.examination | 19 |
| abstract_inverted_index.large-scale | 122 |
| abstract_inverted_index.performance | 82 |
| abstract_inverted_index.traditional | 87 |
| abstract_inverted_index.ultrasound, | 74 |
| abstract_inverted_index.Advancements | 36 |
| abstract_inverted_index.highlighting | 90 |
| abstract_inverted_index.integration. | 111 |
| abstract_inverted_index.intelligence | 130 |
| abstract_inverted_index.particularly | 40 |
| abstract_inverted_index.variability. | 35 |
| abstract_inverted_index.advancements, | 127 |
| abstract_inverted_index.availability, | 106 |
| abstract_inverted_index.convolutional | 41 |
| abstract_inverted_index.interobserver | 34 |
| abstract_inverted_index.necessitating | 12 |
| abstract_inverted_index.revolutionize | 133 |
| abstract_inverted_index.significantly | 8 |
| abstract_inverted_index.classification, | 72 |
| abstract_inverted_index.classification. | 54 |
| abstract_inverted_index.explainability, | 119 |
| abstract_inverted_index.generalization, | 117 |
| abstract_inverted_index.Gastrointestinal | 0 |
| abstract_inverted_index.interpretability, | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.55723683 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |