Application of Deep Learning for Automated Peach Classification: A Study Based on ResNet Architectures Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.61467/2007.1558.2025.v16i3.1141
This study evaluates the performance of various ResNet architectures for classifying peaches as “healthy” or “damaged”. A dataset of 3 370 images was used, with data-augmentation techniques applied to enrich the training set. Transfer learning was performed using pre-trained ResNet models, with stochastic gradient descent (SGD) adopted as the optimisation algorithm. Performance was assessed using accuracy, precision, recall and F1 score. ResNet-50 emerged as the most effective architecture, achieving a mean accuracy of 95.96 % and outperforming other models, including ResNet-18, ResNet-34, ResNet-101 and ResNet-152. The results demonstrate the potential of deep-learning techniques to improve peach-sorting processes, thereby reducing post-harvest losses and enhancing quality control in the agricultural sector.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.61467/2007.1558.2025.v16i3.1141
- https://ijcopi.org/ojs/article/download/1141/399
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412379255
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412379255Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.61467/2007.1558.2025.v16i3.1141Digital Object Identifier
- Title
-
Application of Deep Learning for Automated Peach Classification: A Study Based on ResNet ArchitecturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-14Full publication date if available
- Authors
-
Flossi Puma-Ttito, Carlos Guerrero-Méndez, Daniela López-Betancur, Tonatiuh Saucedo-Anaya, Rafael Castaneda-Diaz, Luis Martinez-YtuzaList of authors in order
- Landing page
-
https://doi.org/10.61467/2007.1558.2025.v16i3.1141Publisher landing page
- PDF URL
-
https://ijcopi.org/ojs/article/download/1141/399Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijcopi.org/ojs/article/download/1141/399Direct OA link when available
- Concepts
-
Residual neural network, Deep learning, Artificial intelligence, Computer science, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412379255 |
|---|---|
| doi | https://doi.org/10.61467/2007.1558.2025.v16i3.1141 |
| ids.doi | https://doi.org/10.61467/2007.1558.2025.v16i3.1141 |
| ids.openalex | https://openalex.org/W4412379255 |
| fwci | 0.0 |
| type | article |
| title | Application of Deep Learning for Automated Peach Classification: A Study Based on ResNet Architectures |
| biblio.issue | 3 |
| biblio.volume | 16 |
| biblio.last_page | 117 |
| biblio.first_page | 106 |
| topics[0].id | https://openalex.org/T11546 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.7347000241279602 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Plant Physiology and Cultivation Studies |
| topics[1].id | https://openalex.org/T12093 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.6424000263214111 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Greenhouse Technology and Climate Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2944601119 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8626896142959595 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q43744058 |
| concepts[0].display_name | Residual neural network |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6266321539878845 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5443720817565918 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5103902220726013 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3486126661300659 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/residual-neural-network |
| keywords[0].score | 0.8626896142959595 |
| keywords[0].display_name | Residual neural network |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.6266321539878845 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5443720817565918 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5103902220726013 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3486126661300659 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.61467/2007.1558.2025.v16i3.1141 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404675559 |
| locations[0].source.issn | 2007-1558 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2007-1558 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://ijcopi.org/ojs/article/download/1141/399 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| locations[0].landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.1141 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116197663 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6692-0991 |
| authorships[0].author.display_name | Flossi Puma-Ttito |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47400469 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[0].institutions[0].id | https://openalex.org/I47400469 |
| authorships[0].institutions[0].ror | https://ror.org/01m296r74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47400469 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad Autónoma de Zacatecas "Francisco García Salinas" |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Flossi Dayana Puma-Ttito |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[1].author.id | https://openalex.org/A5013105546 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0721-8515 |
| authorships[1].author.display_name | Carlos Guerrero-Méndez |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47400469 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[1].institutions[0].id | https://openalex.org/I47400469 |
| authorships[1].institutions[0].ror | https://ror.org/01m296r74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47400469 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Universidad Autónoma de Zacatecas "Francisco García Salinas" |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Carlos Guerrero-Mendez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[2].author.id | https://openalex.org/A5060212159 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0710-6062 |
| authorships[2].author.display_name | Daniela López-Betancur |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47400469 |
| authorships[2].affiliations[0].raw_affiliation_string | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[2].institutions[0].id | https://openalex.org/I47400469 |
| authorships[2].institutions[0].ror | https://ror.org/01m296r74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47400469 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad Autónoma de Zacatecas "Francisco García Salinas" |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daniela Lopez-Betancur |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[3].author.id | https://openalex.org/A5093745920 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1234-4532 |
| authorships[3].author.display_name | Tonatiuh Saucedo-Anaya |
| authorships[3].countries | MX |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47400469 |
| authorships[3].affiliations[0].raw_affiliation_string | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[3].institutions[0].id | https://openalex.org/I47400469 |
| authorships[3].institutions[0].ror | https://ror.org/01m296r74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47400469 |
| authorships[3].institutions[0].country_code | MX |
| authorships[3].institutions[0].display_name | Universidad Autónoma de Zacatecas "Francisco García Salinas" |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tonatiuh Saucedo-Anaya |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[4].author.id | https://openalex.org/A5116554464 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rafael Castaneda-Diaz |
| authorships[4].countries | MX |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210102112, https://openalex.org/I59361560 |
| authorships[4].affiliations[0].raw_affiliation_string | Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), 98160, Zacatecas, Mexico |
| authorships[4].institutions[0].id | https://openalex.org/I59361560 |
| authorships[4].institutions[0].ror | https://ror.org/059sp8j34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I59361560 |
| authorships[4].institutions[0].country_code | MX |
| authorships[4].institutions[0].display_name | Instituto Politécnico Nacional |
| authorships[4].institutions[1].id | https://openalex.org/I4210102112 |
| authorships[4].institutions[1].ror | https://ror.org/019ze4c92 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210102112 |
| authorships[4].institutions[1].country_code | MX |
| authorships[4].institutions[1].display_name | Universidad Politécnica de Zacatecas |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rafael Castaneda-Diaz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), 98160, Zacatecas, Mexico |
| authorships[5].author.id | https://openalex.org/A5116197664 |
| authorships[5].author.orcid | https://orcid.org/0009-0000-5111-6562 |
| authorships[5].author.display_name | Luis Martinez-Ytuza |
| authorships[5].countries | MX |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47400469 |
| authorships[5].affiliations[0].raw_affiliation_string | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| authorships[5].institutions[0].id | https://openalex.org/I47400469 |
| authorships[5].institutions[0].ror | https://ror.org/01m296r74 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47400469 |
| authorships[5].institutions[0].country_code | MX |
| authorships[5].institutions[0].display_name | Universidad Autónoma de Zacatecas "Francisco García Salinas" |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Luis Martinez-Ytuza |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Universidad Autónoma de Zacatecas, Unidad Académica de Ciencia y Tecnología de la Luz y la Materia (LUMAT), Zacatecas, Mexico |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijcopi.org/ojs/article/download/1141/399 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of Deep Learning for Automated Peach Classification: A Study Based on ResNet Architectures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11546 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.7347000241279602 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Plant Physiology and Cultivation Studies |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3082895349 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.61467/2007.1558.2025.v16i3.1141 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404675559 |
| best_oa_location.source.issn | 2007-1558 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2007-1558 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://ijcopi.org/ojs/article/download/1141/399 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.1141 |
| primary_location.id | doi:10.61467/2007.1558.2025.v16i3.1141 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404675559 |
| primary_location.source.issn | 2007-1558 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2007-1558 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://ijcopi.org/ojs/article/download/1141/399 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| primary_location.landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.1141 |
| publication_date | 2025-07-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.% | 74 |
| abstract_inverted_index.3 | 19 |
| abstract_inverted_index.A | 16 |
| abstract_inverted_index.a | 69 |
| abstract_inverted_index.F1 | 59 |
| abstract_inverted_index.as | 12, 47, 63 |
| abstract_inverted_index.in | 105 |
| abstract_inverted_index.of | 5, 18, 72, 90 |
| abstract_inverted_index.or | 14 |
| abstract_inverted_index.to | 28, 93 |
| abstract_inverted_index.370 | 20 |
| abstract_inverted_index.The | 85 |
| abstract_inverted_index.and | 58, 75, 83, 101 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.the | 3, 30, 48, 64, 88, 106 |
| abstract_inverted_index.was | 22, 35, 52 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.mean | 70 |
| abstract_inverted_index.most | 65 |
| abstract_inverted_index.set. | 32 |
| abstract_inverted_index.with | 24, 41 |
| abstract_inverted_index.(SGD) | 45 |
| abstract_inverted_index.95.96 | 73 |
| abstract_inverted_index.other | 77 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.used, | 23 |
| abstract_inverted_index.using | 37, 54 |
| abstract_inverted_index.ResNet | 7, 39 |
| abstract_inverted_index.enrich | 29 |
| abstract_inverted_index.images | 21 |
| abstract_inverted_index.losses | 100 |
| abstract_inverted_index.recall | 57 |
| abstract_inverted_index.score. | 60 |
| abstract_inverted_index.adopted | 46 |
| abstract_inverted_index.applied | 27 |
| abstract_inverted_index.control | 104 |
| abstract_inverted_index.dataset | 17 |
| abstract_inverted_index.descent | 44 |
| abstract_inverted_index.emerged | 62 |
| abstract_inverted_index.improve | 94 |
| abstract_inverted_index.models, | 40, 78 |
| abstract_inverted_index.peaches | 11 |
| abstract_inverted_index.quality | 103 |
| abstract_inverted_index.results | 86 |
| abstract_inverted_index.sector. | 108 |
| abstract_inverted_index.thereby | 97 |
| abstract_inverted_index.various | 6 |
| abstract_inverted_index.Transfer | 33 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.assessed | 53 |
| abstract_inverted_index.gradient | 43 |
| abstract_inverted_index.learning | 34 |
| abstract_inverted_index.reducing | 98 |
| abstract_inverted_index.training | 31 |
| abstract_inverted_index.ResNet-50 | 61 |
| abstract_inverted_index.accuracy, | 55 |
| abstract_inverted_index.achieving | 68 |
| abstract_inverted_index.effective | 66 |
| abstract_inverted_index.enhancing | 102 |
| abstract_inverted_index.evaluates | 2 |
| abstract_inverted_index.including | 79 |
| abstract_inverted_index.performed | 36 |
| abstract_inverted_index.potential | 89 |
| abstract_inverted_index.ResNet-101 | 82 |
| abstract_inverted_index.ResNet-18, | 80 |
| abstract_inverted_index.ResNet-34, | 81 |
| abstract_inverted_index.algorithm. | 50 |
| abstract_inverted_index.precision, | 56 |
| abstract_inverted_index.processes, | 96 |
| abstract_inverted_index.stochastic | 42 |
| abstract_inverted_index.techniques | 26, 92 |
| abstract_inverted_index.Performance | 51 |
| abstract_inverted_index.ResNet-152. | 84 |
| abstract_inverted_index.classifying | 10 |
| abstract_inverted_index.demonstrate | 87 |
| abstract_inverted_index.performance | 4 |
| abstract_inverted_index.pre-trained | 38 |
| abstract_inverted_index.agricultural | 107 |
| abstract_inverted_index.optimisation | 49 |
| abstract_inverted_index.post-harvest | 99 |
| abstract_inverted_index.architecture, | 67 |
| abstract_inverted_index.architectures | 8 |
| abstract_inverted_index.deep-learning | 91 |
| abstract_inverted_index.outperforming | 76 |
| abstract_inverted_index.peach-sorting | 95 |
| abstract_inverted_index.“healthy” | 13 |
| abstract_inverted_index.“damaged”. | 15 |
| abstract_inverted_index.data-augmentation | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.19807238 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |