Application of deep learning for real-time detection, localization, and counting of the malignant invasive weed Solanum rostratum Dunal Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fpls.2024.1486929
Solanum rostratum Dunal (SrD) is a globally harmful invasive weed that has spread widely across many countries, posing a serious threat to agriculture and ecosystem security. A deep learning network model, TrackSolanum, was designed for real-time detection, location, and counting of SrD in the field. The TrackSolanmu network model comprises four modules: detection, tracking, localization, and counting. The detection module uses YOLO_EAND for SrD identification, the tracking module applies DeepSort for multi-target tracking of SrD in consecutive video frames, the localization module determines the position of the SrD through center-of-mass localization, and the counting module counts the plants using a target ID over-the-line invalidation method. The field test results show that for UAV video at a height of 2m, TrackSolanum achieved precision and recall of 0.950 and 0.970, with MOTA and IDF1 scores of 0.826 and 0.960, a counting error rate of 2.438%, and FPS of 17. For UAV video at a height of 3m, the model reached precision and recall of 0.846 and 0.934, MOTA and IDF1 scores of 0.708 and 0.888, a counting error rate of 4.634%, and FPS of 79. Thus, the TrackSolanum supports real-time SrD detection, offering crucial technical support for hazard assessment and precise management of SrD.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fpls.2024.1486929
- OA Status
- gold
- Cited By
- 4
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406935698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406935698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fpls.2024.1486929Digital Object Identifier
- Title
-
Application of deep learning for real-time detection, localization, and counting of the malignant invasive weed Solanum rostratum DunalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-29Full publication date if available
- Authors
-
Sheng Du, Yanfang Yang, Hongbo Yuan, Man ChengList of authors in order
- Landing page
-
https://doi.org/10.3389/fpls.2024.1486929Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fpls.2024.1486929Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Weed, Deep learning, Computer vision, Pattern recognition (psychology), Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406935698 |
|---|---|
| doi | https://doi.org/10.3389/fpls.2024.1486929 |
| ids.doi | https://doi.org/10.3389/fpls.2024.1486929 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39944948 |
| ids.openalex | https://openalex.org/W4406935698 |
| fwci | 17.81728781 |
| type | article |
| title | Application of deep learning for real-time detection, localization, and counting of the malignant invasive weed Solanum rostratum Dunal |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 1486929 |
| biblio.first_page | 1486929 |
| grants[0].funder | https://openalex.org/F4320316322 |
| grants[0].award_id | |
| grants[0].funder_display_name | Hebei Provincial Department of Human Resources and Social Security |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9943000078201294 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12894 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Date Palm Research Studies |
| topics[2].id | https://openalex.org/T10825 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9846000075340271 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1307 |
| topics[2].subfield.display_name | Cell Biology |
| topics[2].display_name | Plant Pathogens and Fungal Diseases |
| funders[0].id | https://openalex.org/F4320316322 |
| funders[0].ror | |
| funders[0].display_name | Hebei Provincial Department of Human Resources and Social Security |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6263788342475891 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6021413207054138 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2775891814 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43511727452278137 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q101879 |
| concepts[2].display_name | Weed |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41532862186431885 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37104737758636475 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3495238423347473 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.15044543147087097 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C59822182 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10737624764442444 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[7].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6263788342475891 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6021413207054138 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/weed |
| keywords[2].score | 0.43511727452278137 |
| keywords[2].display_name | Weed |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.41532862186431885 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.37104737758636475 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3495238423347473 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.15044543147087097 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/botany |
| keywords[7].score | 0.10737624764442444 |
| keywords[7].display_name | Botany |
| language | en |
| locations[0].id | doi:10.3389/fpls.2024.1486929 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2493613807 |
| locations[0].source.issn | 1664-462X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-462X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Plant Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Plant Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fpls.2024.1486929 |
| locations[1].id | pmid:39944948 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in plant science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39944948 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11814178 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Plant Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11814178 |
| locations[3].id | pmh:oai:doaj.org/article:ceae870ab32a4ff9a7dca5a00a865ca3 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Plant Science, Vol 15 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/ceae870ab32a4ff9a7dca5a00a865ca3 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5113750877 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5580-399X |
| authorships[0].author.display_name | Sheng Du |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I108160477 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[0].institutions[0].id | https://openalex.org/I108160477 |
| authorships[0].institutions[0].ror | https://ror.org/009fw8j44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I108160477 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shifeng Du |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[1].author.id | https://openalex.org/A5069820275 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5214-7758 |
| authorships[1].author.display_name | Yanfang Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I108160477 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[1].institutions[0].id | https://openalex.org/I108160477 |
| authorships[1].institutions[0].ror | https://ror.org/009fw8j44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I108160477 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hebei Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yashuai Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[2].author.id | https://openalex.org/A5110195034 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hongbo Yuan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I108160477 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[2].institutions[0].id | https://openalex.org/I108160477 |
| authorships[2].institutions[0].ror | https://ror.org/009fw8j44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I108160477 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hebei Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongbo Yuan |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[3].author.id | https://openalex.org/A5102059343 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0943-7746 |
| authorships[3].author.display_name | Man Cheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I108160477 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| authorships[3].institutions[0].id | https://openalex.org/I108160477 |
| authorships[3].institutions[0].ror | https://ror.org/009fw8j44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I108160477 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hebei Agricultural University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Man Cheng |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fpls.2024.1486929 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of deep learning for real-time detection, localization, and counting of the malignant invasive weed Solanum rostratum Dunal |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9943000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fpls.2024.1486929 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2493613807 |
| best_oa_location.source.issn | 1664-462X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-462X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Plant Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Plant Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fpls.2024.1486929 |
| primary_location.id | doi:10.3389/fpls.2024.1486929 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2493613807 |
| primary_location.source.issn | 1664-462X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-462X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Plant Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Plant Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fpls.2024.1486929 |
| publication_date | 2025-01-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4214934301, https://openalex.org/W3128629435, https://openalex.org/W3206704828, https://openalex.org/W2252355370, https://openalex.org/W4384028170, https://openalex.org/W4390146257, https://openalex.org/W4400052936, https://openalex.org/W4392637973, https://openalex.org/W2000932885, https://openalex.org/W2970422278, https://openalex.org/W3004599819, https://openalex.org/W4393965390, https://openalex.org/W4391300556, https://openalex.org/W3004192481, https://openalex.org/W2011970275, https://openalex.org/W2072451636, https://openalex.org/W1990942831, https://openalex.org/W4315474362, https://openalex.org/W6851864227, https://openalex.org/W6628973269, https://openalex.org/W4323050444, https://openalex.org/W4200250223, https://openalex.org/W3156941978, https://openalex.org/W4313449150, https://openalex.org/W4403770406, https://openalex.org/W3186395191, https://openalex.org/W4284968638, https://openalex.org/W4402430538, https://openalex.org/W2113087661, https://openalex.org/W2898275094, https://openalex.org/W4385301744, https://openalex.org/W4399534198, https://openalex.org/W4308974725, https://openalex.org/W4391667607, https://openalex.org/W4402202062, https://openalex.org/W4367323321, https://openalex.org/W4401806236, https://openalex.org/W4400445931, https://openalex.org/W2942564843, https://openalex.org/W3104218139, https://openalex.org/W4236965008, https://openalex.org/W4288391450 |
| referenced_works_count | 42 |
| abstract_inverted_index.A | 26 |
| abstract_inverted_index.a | 5, 18, 99, 115, 137, 151, 173 |
| abstract_inverted_index.ID | 101 |
| abstract_inverted_index.at | 114, 150 |
| abstract_inverted_index.in | 42, 75 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 40, 73, 85, 117, 124, 133, 141, 145, 153, 161, 169, 177, 181, 200 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.17. | 146 |
| abstract_inverted_index.2m, | 118 |
| abstract_inverted_index.3m, | 154 |
| abstract_inverted_index.79. | 182 |
| abstract_inverted_index.FPS | 144, 180 |
| abstract_inverted_index.For | 147 |
| abstract_inverted_index.SrD | 41, 63, 74, 87, 188 |
| abstract_inverted_index.The | 45, 57, 105 |
| abstract_inverted_index.UAV | 112, 148 |
| abstract_inverted_index.and | 23, 38, 55, 91, 122, 126, 130, 135, 143, 159, 163, 166, 171, 179, 197 |
| abstract_inverted_index.for | 34, 62, 70, 111, 194 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.the | 43, 65, 79, 83, 86, 92, 96, 155, 184 |
| abstract_inverted_index.was | 32 |
| abstract_inverted_index.IDF1 | 131, 167 |
| abstract_inverted_index.MOTA | 129, 165 |
| abstract_inverted_index.SrD. | 201 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.four | 50 |
| abstract_inverted_index.many | 15 |
| abstract_inverted_index.rate | 140, 176 |
| abstract_inverted_index.show | 109 |
| abstract_inverted_index.test | 107 |
| abstract_inverted_index.that | 10, 110 |
| abstract_inverted_index.uses | 60 |
| abstract_inverted_index.weed | 9 |
| abstract_inverted_index.with | 128 |
| abstract_inverted_index.(SrD) | 3 |
| abstract_inverted_index.0.708 | 170 |
| abstract_inverted_index.0.826 | 134 |
| abstract_inverted_index.0.846 | 162 |
| abstract_inverted_index.0.950 | 125 |
| abstract_inverted_index.Dunal | 2 |
| abstract_inverted_index.Thus, | 183 |
| abstract_inverted_index.error | 139, 175 |
| abstract_inverted_index.field | 106 |
| abstract_inverted_index.model | 48, 156 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.video | 77, 113, 149 |
| abstract_inverted_index.0.888, | 172 |
| abstract_inverted_index.0.934, | 164 |
| abstract_inverted_index.0.960, | 136 |
| abstract_inverted_index.0.970, | 127 |
| abstract_inverted_index.across | 14 |
| abstract_inverted_index.counts | 95 |
| abstract_inverted_index.field. | 44 |
| abstract_inverted_index.hazard | 195 |
| abstract_inverted_index.height | 116, 152 |
| abstract_inverted_index.model, | 30 |
| abstract_inverted_index.module | 59, 67, 81, 94 |
| abstract_inverted_index.plants | 97 |
| abstract_inverted_index.posing | 17 |
| abstract_inverted_index.recall | 123, 160 |
| abstract_inverted_index.scores | 132, 168 |
| abstract_inverted_index.spread | 12 |
| abstract_inverted_index.target | 100 |
| abstract_inverted_index.threat | 20 |
| abstract_inverted_index.widely | 13 |
| abstract_inverted_index.2.438%, | 142 |
| abstract_inverted_index.4.634%, | 178 |
| abstract_inverted_index.Solanum | 0 |
| abstract_inverted_index.applies | 68 |
| abstract_inverted_index.crucial | 191 |
| abstract_inverted_index.frames, | 78 |
| abstract_inverted_index.harmful | 7 |
| abstract_inverted_index.method. | 104 |
| abstract_inverted_index.network | 29, 47 |
| abstract_inverted_index.precise | 198 |
| abstract_inverted_index.reached | 157 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.serious | 19 |
| abstract_inverted_index.support | 193 |
| abstract_inverted_index.through | 88 |
| abstract_inverted_index.DeepSort | 69 |
| abstract_inverted_index.achieved | 120 |
| abstract_inverted_index.counting | 39, 93, 138, 174 |
| abstract_inverted_index.designed | 33 |
| abstract_inverted_index.globally | 6 |
| abstract_inverted_index.invasive | 8 |
| abstract_inverted_index.learning | 28 |
| abstract_inverted_index.modules: | 51 |
| abstract_inverted_index.offering | 190 |
| abstract_inverted_index.position | 84 |
| abstract_inverted_index.supports | 186 |
| abstract_inverted_index.tracking | 66, 72 |
| abstract_inverted_index.YOLO_EAND | 61 |
| abstract_inverted_index.comprises | 49 |
| abstract_inverted_index.counting. | 56 |
| abstract_inverted_index.detection | 58 |
| abstract_inverted_index.ecosystem | 24 |
| abstract_inverted_index.location, | 37 |
| abstract_inverted_index.precision | 121, 158 |
| abstract_inverted_index.real-time | 35, 187 |
| abstract_inverted_index.rostratum | 1 |
| abstract_inverted_index.security. | 25 |
| abstract_inverted_index.technical | 192 |
| abstract_inverted_index.tracking, | 53 |
| abstract_inverted_index.assessment | 196 |
| abstract_inverted_index.countries, | 16 |
| abstract_inverted_index.detection, | 36, 52, 189 |
| abstract_inverted_index.determines | 82 |
| abstract_inverted_index.management | 199 |
| abstract_inverted_index.agriculture | 22 |
| abstract_inverted_index.consecutive | 76 |
| abstract_inverted_index.TrackSolanmu | 46 |
| abstract_inverted_index.TrackSolanum | 119, 185 |
| abstract_inverted_index.invalidation | 103 |
| abstract_inverted_index.localization | 80 |
| abstract_inverted_index.multi-target | 71 |
| abstract_inverted_index.TrackSolanum, | 31 |
| abstract_inverted_index.localization, | 54, 90 |
| abstract_inverted_index.over-the-line | 102 |
| abstract_inverted_index.center-of-mass | 89 |
| abstract_inverted_index.identification, | 64 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5102059343, https://openalex.org/A5110195034 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I108160477 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.97922188 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |