Application of Hyperspectral Imaging for Identification of Melon Seed Variety Using Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/agriculture15111139
The accurate identification of melon seed varieties is essential for improving seed purity and the overall quality of melon production. In this study, hyperspectral imaging was used to identify six varieties of melon seeds. Both hyperspectral images and RGB images were generated during hyperspectral image acquisition. The spectral features of seeds were extracted from the hyperspectral images. The image features of the corresponding seeds were manually extracted from the RGB images. Five different datasets were formed using the spectral features and RGB images of the seeds, including seed spectral features, manually extracted seed image features, seed images, the fusion of seed spectral features with manually extracted features, and the fusion of seed spectral features with seed images. Logistic Regression (LR), Support Vector Classification (SVC), and Extreme Gradient Boosting (XGBoost) were used to establish classification models using spectral features and the manually extracted image features. Convolutional Neural Network (CNN) models were established using the five datasets. The results indicated that the CNN models achieved good performance in all five datasets, with classification accuracies exceeding 90% for the training, validation, and test sets. Also, CNN using the fused datasets obtained optimal performance, achieving classification accuracies exceeding 97% for the training, validation, and test sets. The results indicated that both spectral features and image features can be used to identify the six varieties of melon seeds, and their fusion of spectral features and image features can improve classification performance. These findings provide an alternative approach for melon seed variety identification, which can also be extended to other seed types.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriculture15111139
- https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213
- OA Status
- gold
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410721754
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410721754Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriculture15111139Digital Object Identifier
- Title
-
Application of Hyperspectral Imaging for Identification of Melon Seed Variety Using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-25Full publication date if available
- Authors
-
Zhiqi Hong, Chu Zhang, Wenjian Song, Xiangbo Nie, Hongxia Ye, Yong HeList of authors in order
- Landing page
-
https://doi.org/10.3390/agriculture15111139Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213Direct OA link when available
- Concepts
-
Hyperspectral imaging, Melon, Identification (biology), Variety (cybernetics), Biology, Artificial intelligence, Agronomy, Botany, Agroforestry, Computer science, HorticultureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410721754 |
|---|---|
| doi | https://doi.org/10.3390/agriculture15111139 |
| ids.doi | https://doi.org/10.3390/agriculture15111139 |
| ids.openalex | https://openalex.org/W4410721754 |
| fwci | 0.0 |
| type | article |
| title | Application of Hyperspectral Imaging for Identification of Melon Seed Variety Using Deep Learning |
| biblio.issue | 11 |
| biblio.volume | 15 |
| biblio.last_page | 1139 |
| biblio.first_page | 1139 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 32071895 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.944100022315979 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8371255397796631 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C2779852692 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5406472682952881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1919686 |
| concepts[1].display_name | Melon |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5291429162025452 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C136197465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.42629265785217285 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[3].display_name | Variety (cybernetics) |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4152887761592865 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3813019096851349 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C6557445 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38120561838150024 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[6].display_name | Agronomy |
| concepts[7].id | https://openalex.org/C59822182 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34929710626602173 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[7].display_name | Botany |
| concepts[8].id | https://openalex.org/C54286561 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34335678815841675 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q397350 |
| concepts[8].display_name | Agroforestry |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2510083317756653 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C144027150 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22884193062782288 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[10].display_name | Horticulture |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8371255397796631 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/melon |
| keywords[1].score | 0.5406472682952881 |
| keywords[1].display_name | Melon |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.5291429162025452 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/variety |
| keywords[3].score | 0.42629265785217285 |
| keywords[3].display_name | Variety (cybernetics) |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.4152887761592865 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3813019096851349 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/agronomy |
| keywords[6].score | 0.38120561838150024 |
| keywords[6].display_name | Agronomy |
| keywords[7].id | https://openalex.org/keywords/botany |
| keywords[7].score | 0.34929710626602173 |
| keywords[7].display_name | Botany |
| keywords[8].id | https://openalex.org/keywords/agroforestry |
| keywords[8].score | 0.34335678815841675 |
| keywords[8].display_name | Agroforestry |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.2510083317756653 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/horticulture |
| keywords[10].score | 0.22884193062782288 |
| keywords[10].display_name | Horticulture |
| language | en |
| locations[0].id | doi:10.3390/agriculture15111139 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202585 |
| locations[0].source.issn | 2077-0472 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-0472 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agriculture |
| locations[0].landing_page_url | https://doi.org/10.3390/agriculture15111139 |
| locations[1].id | pmh:oai:doaj.org/article:993068755eeb42b389e03895f5cc3ffa |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agriculture, Vol 15, Iss 11, p 1139 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/993068755eeb42b389e03895f5cc3ffa |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082091047 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8821-9661 |
| authorships[0].author.display_name | Zhiqi Hong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | The Rural Development Academy & Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiqi Hong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China, The Rural Development Academy & Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China |
| authorships[1].author.id | https://openalex.org/A5100734635 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6760-3154 |
| authorships[1].author.display_name | Chu Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3018263800 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Engineering, Huzhou University, Huzhou 313000, China |
| authorships[1].institutions[0].id | https://openalex.org/I3018263800 |
| authorships[1].institutions[0].ror | https://ror.org/04mvpxy20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3018263800 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chu Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Engineering, Huzhou University, Huzhou 313000, China |
| authorships[2].author.id | https://openalex.org/A5051665685 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-2931-4711 |
| authorships[2].author.display_name | Wenjian Song |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[2].affiliations[0].raw_affiliation_string | The Rural Development Academy & Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China |
| authorships[2].institutions[0].id | https://openalex.org/I76130692 |
| authorships[2].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenjian Song |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Rural Development Academy & Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China |
| authorships[3].author.id | https://openalex.org/A5073969298 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiangbo Nie |
| authorships[3].affiliations[0].raw_affiliation_string | Shaoxing Jinshuo Agricultural Technology Co., Ltd., Shaoxing 312000, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiangbo Nie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shaoxing Jinshuo Agricultural Technology Co., Ltd., Shaoxing 312000, China |
| authorships[4].author.id | https://openalex.org/A5025823335 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3803-3700 |
| authorships[4].author.display_name | Hongxia Ye |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210087845, https://openalex.org/I76130692 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210087845 |
| authorships[4].institutions[0].ror | https://ror.org/0026h4837 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210087845 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing Institute of Vegetable Science |
| authorships[4].institutions[1].id | https://openalex.org/I76130692 |
| authorships[4].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hongxia Ye |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China |
| authorships[5].author.id | https://openalex.org/A5100342968 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6752-1757 |
| authorships[5].author.display_name | Yong He |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yong He |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of Hyperspectral Imaging for Identification of Melon Seed Variety Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2404757046, https://openalex.org/W2070598848, https://openalex.org/W2019190440, https://openalex.org/W3034864990, https://openalex.org/W2343470940 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agriculture15111139 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202585 |
| best_oa_location.source.issn | 2077-0472 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-0472 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriculture15111139 |
| primary_location.id | doi:10.3390/agriculture15111139 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202585 |
| primary_location.source.issn | 2077-0472 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-0472 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-0472/15/11/1139/pdf?version=1748167213 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agriculture |
| primary_location.landing_page_url | https://doi.org/10.3390/agriculture15111139 |
| publication_date | 2025-05-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4312115189, https://openalex.org/W4309859119, https://openalex.org/W2770285436, https://openalex.org/W2118076719, https://openalex.org/W4406081072, https://openalex.org/W4388590888, https://openalex.org/W4390630114, https://openalex.org/W2965405319, https://openalex.org/W3164816634, https://openalex.org/W4401219056, https://openalex.org/W4225114772, https://openalex.org/W4321597780, https://openalex.org/W6801684201, https://openalex.org/W4393164526, https://openalex.org/W4394946239, https://openalex.org/W3179717400, https://openalex.org/W841202094, https://openalex.org/W1723129825, https://openalex.org/W2045256553, https://openalex.org/W2295598076, https://openalex.org/W3168997536, https://openalex.org/W4312469371, https://openalex.org/W3034552520, https://openalex.org/W2884963893, https://openalex.org/W4322627125, https://openalex.org/W3092667979, https://openalex.org/W3200138571 |
| referenced_works_count | 27 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.an | 239 |
| abstract_inverted_index.be | 213, 250 |
| abstract_inverted_index.in | 165 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 3, 17, 31, 49, 60, 83, 99, 110, 220, 226 |
| abstract_inverted_index.to | 27, 131, 215, 252 |
| abstract_inverted_index.90% | 173 |
| abstract_inverted_index.97% | 194 |
| abstract_inverted_index.CNN | 160, 182 |
| abstract_inverted_index.RGB | 38, 69, 81 |
| abstract_inverted_index.The | 0, 46, 57, 155, 202 |
| abstract_inverted_index.all | 166 |
| abstract_inverted_index.and | 13, 37, 80, 107, 124, 138, 178, 199, 209, 223, 229 |
| abstract_inverted_index.can | 212, 232, 248 |
| abstract_inverted_index.for | 9, 174, 195, 242 |
| abstract_inverted_index.six | 29, 218 |
| abstract_inverted_index.the | 14, 54, 61, 68, 77, 84, 97, 108, 139, 152, 159, 175, 184, 196, 217 |
| abstract_inverted_index.was | 25 |
| abstract_inverted_index.Both | 34 |
| abstract_inverted_index.Five | 71 |
| abstract_inverted_index.also | 249 |
| abstract_inverted_index.both | 206 |
| abstract_inverted_index.five | 153, 167 |
| abstract_inverted_index.from | 53, 67 |
| abstract_inverted_index.good | 163 |
| abstract_inverted_index.seed | 5, 11, 87, 92, 95, 100, 111, 115, 244, 254 |
| abstract_inverted_index.test | 179, 200 |
| abstract_inverted_index.that | 158, 205 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.used | 26, 130, 214 |
| abstract_inverted_index.were | 40, 51, 64, 74, 129, 149 |
| abstract_inverted_index.with | 103, 114, 169 |
| abstract_inverted_index.(CNN) | 147 |
| abstract_inverted_index.(LR), | 119 |
| abstract_inverted_index.Also, | 181 |
| abstract_inverted_index.These | 236 |
| abstract_inverted_index.fused | 185 |
| abstract_inverted_index.image | 44, 58, 93, 142, 210, 230 |
| abstract_inverted_index.melon | 4, 18, 32, 221, 243 |
| abstract_inverted_index.other | 253 |
| abstract_inverted_index.seeds | 50, 63 |
| abstract_inverted_index.sets. | 180, 201 |
| abstract_inverted_index.their | 224 |
| abstract_inverted_index.using | 76, 135, 151, 183 |
| abstract_inverted_index.which | 247 |
| abstract_inverted_index.(SVC), | 123 |
| abstract_inverted_index.Neural | 145 |
| abstract_inverted_index.Vector | 121 |
| abstract_inverted_index.during | 42 |
| abstract_inverted_index.formed | 75 |
| abstract_inverted_index.fusion | 98, 109, 225 |
| abstract_inverted_index.images | 36, 39, 82 |
| abstract_inverted_index.models | 134, 148, 161 |
| abstract_inverted_index.purity | 12 |
| abstract_inverted_index.seeds, | 85, 222 |
| abstract_inverted_index.seeds. | 33 |
| abstract_inverted_index.study, | 22 |
| abstract_inverted_index.types. | 255 |
| abstract_inverted_index.Extreme | 125 |
| abstract_inverted_index.Network | 146 |
| abstract_inverted_index.Support | 120 |
| abstract_inverted_index.images, | 96 |
| abstract_inverted_index.images. | 56, 70, 116 |
| abstract_inverted_index.imaging | 24 |
| abstract_inverted_index.improve | 233 |
| abstract_inverted_index.optimal | 188 |
| abstract_inverted_index.overall | 15 |
| abstract_inverted_index.provide | 238 |
| abstract_inverted_index.quality | 16 |
| abstract_inverted_index.results | 156, 203 |
| abstract_inverted_index.variety | 245 |
| abstract_inverted_index.Boosting | 127 |
| abstract_inverted_index.Gradient | 126 |
| abstract_inverted_index.Logistic | 117 |
| abstract_inverted_index.accurate | 1 |
| abstract_inverted_index.achieved | 162 |
| abstract_inverted_index.approach | 241 |
| abstract_inverted_index.datasets | 73, 186 |
| abstract_inverted_index.extended | 251 |
| abstract_inverted_index.features | 48, 59, 79, 102, 113, 137, 208, 211, 228, 231 |
| abstract_inverted_index.findings | 237 |
| abstract_inverted_index.identify | 28, 216 |
| abstract_inverted_index.manually | 65, 90, 104, 140 |
| abstract_inverted_index.obtained | 187 |
| abstract_inverted_index.spectral | 47, 78, 88, 101, 112, 136, 207, 227 |
| abstract_inverted_index.(XGBoost) | 128 |
| abstract_inverted_index.achieving | 190 |
| abstract_inverted_index.datasets, | 168 |
| abstract_inverted_index.datasets. | 154 |
| abstract_inverted_index.different | 72 |
| abstract_inverted_index.essential | 8 |
| abstract_inverted_index.establish | 132 |
| abstract_inverted_index.exceeding | 172, 193 |
| abstract_inverted_index.extracted | 52, 66, 91, 105, 141 |
| abstract_inverted_index.features, | 89, 94, 106 |
| abstract_inverted_index.features. | 143 |
| abstract_inverted_index.generated | 41 |
| abstract_inverted_index.improving | 10 |
| abstract_inverted_index.including | 86 |
| abstract_inverted_index.indicated | 157, 204 |
| abstract_inverted_index.training, | 176, 197 |
| abstract_inverted_index.varieties | 6, 30, 219 |
| abstract_inverted_index.Regression | 118 |
| abstract_inverted_index.accuracies | 171, 192 |
| abstract_inverted_index.alternative | 240 |
| abstract_inverted_index.established | 150 |
| abstract_inverted_index.performance | 164 |
| abstract_inverted_index.production. | 19 |
| abstract_inverted_index.validation, | 177, 198 |
| abstract_inverted_index.acquisition. | 45 |
| abstract_inverted_index.performance, | 189 |
| abstract_inverted_index.performance. | 235 |
| abstract_inverted_index.Convolutional | 144 |
| abstract_inverted_index.corresponding | 62 |
| abstract_inverted_index.hyperspectral | 23, 35, 43, 55 |
| abstract_inverted_index.Classification | 122 |
| abstract_inverted_index.classification | 133, 170, 191, 234 |
| abstract_inverted_index.identification | 2 |
| abstract_inverted_index.identification, | 246 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.2247218 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |