Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.jalmes.2023.100044
Machine learning technique is extensively used to establish the relationship between non-linear data sets which cannot be described mathematically and thus an exact analytic model is either intractable or too time-consuming to develop. During hot rolling, the effect of process parameters that cannot be captured in mathematical models, such as roll dimensions and its wear, the inter-pass time between rolling passes, temperature variation has been incorporated using multivariate supervised machine learning technique for accurate prediction of roll force and torque during plate rolling of micro-alloyed steel. An ensemble method was used to combine various machine learning techniques and average them to develop one final predictive model. K-cross validation of the model was carried out to validate the results and ensure the model gets the correct pattern of data. Root mean square error of ensemble roll force model was compared with roll force calculation using Sims theory. It was found that the machine learning model can predict the roll force and torque accurately as it takes care of various non-linear process variables which cannot be accounted for mathematically. The R-value of the machine learning model was >98 %, whereas it was 92.2 % for roll force calculation using Sims theory.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jalmes.2023.100044
- OA Status
- diamond
- Cited By
- 13
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387816418
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387816418Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jalmes.2023.100044Digital Object Identifier
- Title
-
Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-20Full publication date if available
- Authors
-
Suman Kant Thakur, Alok Kumar Das, Bimal Kumar JhaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jalmes.2023.100044Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jalmes.2023.100044Direct OA link when available
- Concepts
-
Torque, Process (computing), Computer science, Artificial intelligence, Machine learning, Control theory (sociology), Physics, Operating system, Thermodynamics, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387816418 |
|---|---|
| doi | https://doi.org/10.1016/j.jalmes.2023.100044 |
| ids.doi | https://doi.org/10.1016/j.jalmes.2023.100044 |
| ids.openalex | https://openalex.org/W4387816418 |
| fwci | 3.00333453 |
| type | article |
| title | Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | 100044 |
| biblio.first_page | 100044 |
| topics[0].id | https://openalex.org/T11201 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Metallurgy and Material Forming |
| topics[1].id | https://openalex.org/T10386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Microstructure and Mechanical Properties of Steels |
| topics[2].id | https://openalex.org/T12427 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Metal Alloys Wear and Properties |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C144171764 |
| concepts[0].level | 2 |
| concepts[0].score | 0.653508186340332 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q48103 |
| concepts[0].display_name | Torque |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5223842263221741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.48426932096481323 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.39500153064727783 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3806937336921692 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C47446073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.3660106360912323 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[5].display_name | Control theory (sociology) |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.10688543319702148 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| concepts[8].id | https://openalex.org/C97355855 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[8].display_name | Thermodynamics |
| concepts[9].id | https://openalex.org/C2775924081 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[9].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/torque |
| keywords[0].score | 0.653508186340332 |
| keywords[0].display_name | Torque |
| keywords[1].id | https://openalex.org/keywords/process |
| keywords[1].score | 0.5223842263221741 |
| keywords[1].display_name | Process (computing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.48426932096481323 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.39500153064727783 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3806937336921692 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/control-theory |
| keywords[5].score | 0.3660106360912323 |
| keywords[5].display_name | Control theory (sociology) |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.10688543319702148 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.jalmes.2023.100044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387288394 |
| locations[0].source.issn | 2949-9178 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2949-9178 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Alloys and Metallurgical Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Alloys and Metallurgical Systems |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jalmes.2023.100044 |
| locations[1].id | pmh:oai:doaj.org/article:f72099ae4edf42ef918f55ccefbb6e49 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Alloys and Metallurgical Systems, Vol 4, Iss , Pp 100044- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/f72099ae4edf42ef918f55ccefbb6e49 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5081248205 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0546-7358 |
| authorships[0].author.display_name | Suman Kant Thakur |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189109744 |
| authorships[0].affiliations[0].raw_affiliation_string | IIT(ISM), Dhanbad-826004, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4399598405 |
| authorships[0].affiliations[1].raw_affiliation_string | R&D Centre for Iron & Steel, Steel Authority of India Ltd., Ranchi-834002, India |
| authorships[0].institutions[0].id | https://openalex.org/I4399598405 |
| authorships[0].institutions[0].ror | https://ror.org/041yqj635 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4399598405 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Steel Authority of India Limited |
| authorships[0].institutions[1].id | https://openalex.org/I189109744 |
| authorships[0].institutions[1].ror | https://ror.org/013v3cc28 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I189109744 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Indian Institute of Technology Dhanbad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suman Kant Thakur |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | IIT(ISM), Dhanbad-826004, India, R&D Centre for Iron & Steel, Steel Authority of India Ltd., Ranchi-834002, India |
| authorships[1].author.id | https://openalex.org/A5081741375 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8019-0155 |
| authorships[1].author.display_name | Alok Kumar Das |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189109744 |
| authorships[1].affiliations[0].raw_affiliation_string | IIT(ISM), Dhanbad-826004, India |
| authorships[1].institutions[0].id | https://openalex.org/I189109744 |
| authorships[1].institutions[0].ror | https://ror.org/013v3cc28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189109744 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Dhanbad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alok Kumar Das |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IIT(ISM), Dhanbad-826004, India |
| authorships[2].author.id | https://openalex.org/A5109119238 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bimal Kumar Jha |
| authorships[2].affiliations[0].raw_affiliation_string | NIFFT, Ranchi-834002, India |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bimal Kumar Jha |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NIFFT, Ranchi-834002, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jalmes.2023.100044 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11201 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Metallurgy and Material Forming |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jalmes.2023.100044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387288394 |
| best_oa_location.source.issn | 2949-9178 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2949-9178 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Alloys and Metallurgical Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Alloys and Metallurgical Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jalmes.2023.100044 |
| primary_location.id | doi:10.1016/j.jalmes.2023.100044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387288394 |
| primary_location.source.issn | 2949-9178 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2949-9178 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Alloys and Metallurgical Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Alloys and Metallurgical Systems |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jalmes.2023.100044 |
| publication_date | 2023-10-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2508597148, https://openalex.org/W2789315330, https://openalex.org/W2062525109, https://openalex.org/W6667928619, https://openalex.org/W2077178307, https://openalex.org/W1987764041, https://openalex.org/W2462024990, https://openalex.org/W3049379269, https://openalex.org/W3171300013, https://openalex.org/W2734527384, https://openalex.org/W2403746904, https://openalex.org/W6637693128, https://openalex.org/W3204081927, https://openalex.org/W2753337549, https://openalex.org/W3093668413, https://openalex.org/W2898493601, https://openalex.org/W2073360937, https://openalex.org/W3027440088, https://openalex.org/W3011308793, https://openalex.org/W2910813586, https://openalex.org/W3091246668, https://openalex.org/W3200504726, https://openalex.org/W2516258167, https://openalex.org/W6801306904, https://openalex.org/W2980293608, https://openalex.org/W6764324891, https://openalex.org/W6801678284, https://openalex.org/W3200805138, https://openalex.org/W3199719157, https://openalex.org/W2069640188, https://openalex.org/W2950423413, https://openalex.org/W1756000011 |
| referenced_works_count | 32 |
| abstract_inverted_index.% | 191 |
| abstract_inverted_index.%, | 186 |
| abstract_inverted_index.An | 86 |
| abstract_inverted_index.It | 146 |
| abstract_inverted_index.an | 21 |
| abstract_inverted_index.as | 49, 162 |
| abstract_inverted_index.be | 16, 43, 173 |
| abstract_inverted_index.in | 45 |
| abstract_inverted_index.is | 3, 25 |
| abstract_inverted_index.it | 163, 188 |
| abstract_inverted_index.of | 38, 75, 83, 108, 126, 132, 166, 179 |
| abstract_inverted_index.or | 28 |
| abstract_inverted_index.to | 6, 31, 91, 100, 114 |
| abstract_inverted_index.>98 | 185 |
| abstract_inverted_index.The | 177 |
| abstract_inverted_index.and | 19, 52, 78, 97, 118, 159 |
| abstract_inverted_index.can | 154 |
| abstract_inverted_index.for | 72, 175, 192 |
| abstract_inverted_index.has | 63 |
| abstract_inverted_index.hot | 34 |
| abstract_inverted_index.its | 53 |
| abstract_inverted_index.one | 102 |
| abstract_inverted_index.out | 113 |
| abstract_inverted_index.the | 8, 36, 55, 109, 116, 120, 123, 150, 156, 180 |
| abstract_inverted_index.too | 29 |
| abstract_inverted_index.was | 89, 111, 137, 147, 184, 189 |
| abstract_inverted_index.92.2 | 190 |
| abstract_inverted_index.Root | 128 |
| abstract_inverted_index.Sims | 144, 197 |
| abstract_inverted_index.been | 64 |
| abstract_inverted_index.care | 165 |
| abstract_inverted_index.data | 12 |
| abstract_inverted_index.gets | 122 |
| abstract_inverted_index.mean | 129 |
| abstract_inverted_index.roll | 50, 76, 134, 140, 157, 193 |
| abstract_inverted_index.sets | 13 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.that | 41, 149 |
| abstract_inverted_index.them | 99 |
| abstract_inverted_index.thus | 20 |
| abstract_inverted_index.time | 57 |
| abstract_inverted_index.used | 5, 90 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.data. | 127 |
| abstract_inverted_index.error | 131 |
| abstract_inverted_index.exact | 22 |
| abstract_inverted_index.final | 103 |
| abstract_inverted_index.force | 77, 135, 141, 158, 194 |
| abstract_inverted_index.found | 148 |
| abstract_inverted_index.model | 24, 110, 121, 136, 153, 183 |
| abstract_inverted_index.plate | 81 |
| abstract_inverted_index.takes | 164 |
| abstract_inverted_index.using | 66, 143, 196 |
| abstract_inverted_index.wear, | 54 |
| abstract_inverted_index.which | 14, 171 |
| abstract_inverted_index.During | 33 |
| abstract_inverted_index.cannot | 15, 42, 172 |
| abstract_inverted_index.during | 80 |
| abstract_inverted_index.effect | 37 |
| abstract_inverted_index.either | 26 |
| abstract_inverted_index.ensure | 119 |
| abstract_inverted_index.method | 88 |
| abstract_inverted_index.model. | 105 |
| abstract_inverted_index.square | 130 |
| abstract_inverted_index.steel. | 85 |
| abstract_inverted_index.torque | 79, 160 |
| abstract_inverted_index.K-cross | 106 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.R-value | 178 |
| abstract_inverted_index.average | 98 |
| abstract_inverted_index.between | 10, 58 |
| abstract_inverted_index.carried | 112 |
| abstract_inverted_index.combine | 92 |
| abstract_inverted_index.correct | 124 |
| abstract_inverted_index.develop | 101 |
| abstract_inverted_index.machine | 69, 94, 151, 181 |
| abstract_inverted_index.models, | 47 |
| abstract_inverted_index.passes, | 60 |
| abstract_inverted_index.pattern | 125 |
| abstract_inverted_index.predict | 155 |
| abstract_inverted_index.process | 39, 169 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.rolling | 59, 82 |
| abstract_inverted_index.theory. | 145, 198 |
| abstract_inverted_index.various | 93, 167 |
| abstract_inverted_index.whereas | 187 |
| abstract_inverted_index.accurate | 73 |
| abstract_inverted_index.analytic | 23 |
| abstract_inverted_index.captured | 44 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.develop. | 32 |
| abstract_inverted_index.ensemble | 87, 133 |
| abstract_inverted_index.learning | 1, 70, 95, 152, 182 |
| abstract_inverted_index.rolling, | 35 |
| abstract_inverted_index.validate | 115 |
| abstract_inverted_index.accounted | 174 |
| abstract_inverted_index.described | 17 |
| abstract_inverted_index.establish | 7 |
| abstract_inverted_index.technique | 2, 71 |
| abstract_inverted_index.variables | 170 |
| abstract_inverted_index.variation | 62 |
| abstract_inverted_index.accurately | 161 |
| abstract_inverted_index.dimensions | 51 |
| abstract_inverted_index.inter-pass | 56 |
| abstract_inverted_index.non-linear | 11, 168 |
| abstract_inverted_index.parameters | 40 |
| abstract_inverted_index.prediction | 74 |
| abstract_inverted_index.predictive | 104 |
| abstract_inverted_index.supervised | 68 |
| abstract_inverted_index.techniques | 96 |
| abstract_inverted_index.validation | 107 |
| abstract_inverted_index.calculation | 142, 195 |
| abstract_inverted_index.extensively | 4 |
| abstract_inverted_index.intractable | 27 |
| abstract_inverted_index.temperature | 61 |
| abstract_inverted_index.incorporated | 65 |
| abstract_inverted_index.mathematical | 46 |
| abstract_inverted_index.multivariate | 67 |
| abstract_inverted_index.relationship | 9 |
| abstract_inverted_index.micro-alloyed | 84 |
| abstract_inverted_index.mathematically | 18 |
| abstract_inverted_index.time-consuming | 30 |
| abstract_inverted_index.mathematically. | 176 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5081248205 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I189109744, https://openalex.org/I4399598405 |
| citation_normalized_percentile.value | 0.89509369 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |