Application of Machine Learning Model for Forecasting of Floating PV Cell Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55041/ijsrem44475
floating solar photovoltaic (FPV) systems are gaining global attention due to their efficient use of water surfaces and natural cooling effects. However, the variability in environmental factors affecting FPV systems presents a significant challenge for accurate power forecasting. This paper investigates short-term forecasting of FPV power output using machine learning (ML) techniques. Models including Support Vector Regression (SVR), Random Forest (RF), and Long Short-Term Memory (LSTM) networks are developed and compared. A detailed analysis of feature importance, model performance, and error metrics is presented. The results demonstrate that LSTM achieves superior accuracy with a Mean Absolute Percentage Error (MAPE) of 2.5%, making it a promising tool for FPV power management. Key word - Floating solar photovoltaic (FPV), short-term forecasting, machine learning, Long Short-Term Memory (LSTM), Support Vector Regression (SVR), Random Forest (RF), renewable energy, solar energy forecasting, time-series analysis, power output prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55041/ijsrem44475
- https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967
- OA Status
- bronze
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409436072
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409436072Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55041/ijsrem44475Digital Object Identifier
- Title
-
Application of Machine Learning Model for Forecasting of Floating PV CellWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Mrunali V Pisal, Ashwin ShindeList of authors in order
- Landing page
-
https://doi.org/10.55041/ijsrem44475Publisher landing page
- PDF URL
-
https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409436072 |
|---|---|
| doi | https://doi.org/10.55041/ijsrem44475 |
| ids.doi | https://doi.org/10.55041/ijsrem44475 |
| ids.openalex | https://openalex.org/W4409436072 |
| fwci | 0.0 |
| type | article |
| title | Application of Machine Learning Model for Forecasting of Floating PV Cell |
| biblio.issue | 04 |
| biblio.volume | 09 |
| biblio.last_page | 9 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.647599995136261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4895423352718353 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.39927810430526733 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3929770588874817 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4895423352718353 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.39927810430526733 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3929770588874817 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.55041/ijsrem44475 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240841 |
| locations[0].source.issn | 2582-3930 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-3930 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| locations[0].landing_page_url | https://doi.org/10.55041/ijsrem44475 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015890127 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mrunali V Pisal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mrunali V Pisal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102996207 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9275-4074 |
| authorships[1].author.display_name | Ashwin Shinde |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Arti V Shinde |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of Machine Learning Model for Forecasting of Floating PV Cell |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.647599995136261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55041/ijsrem44475 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240841 |
| best_oa_location.source.issn | 2582-3930 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-3930 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| best_oa_location.landing_page_url | https://doi.org/10.55041/ijsrem44475 |
| primary_location.id | doi:10.55041/ijsrem44475 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240841 |
| primary_location.source.issn | 2582-3930 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-3930 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ijsrem.com/download/application-of-machine-learning-model-for-forecasting-of-floating-pv-cell/?wpdmdl=48005&refresh=67fe0627b6d351744700967 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| primary_location.landing_page_url | https://doi.org/10.55041/ijsrem44475 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 112 |
| abstract_inverted_index.A | 71 |
| abstract_inverted_index.a | 31, 93, 103 |
| abstract_inverted_index.in | 24 |
| abstract_inverted_index.is | 82 |
| abstract_inverted_index.it | 102 |
| abstract_inverted_index.of | 14, 43, 74, 99 |
| abstract_inverted_index.to | 10 |
| abstract_inverted_index.FPV | 28, 44, 107 |
| abstract_inverted_index.Key | 110 |
| abstract_inverted_index.The | 84 |
| abstract_inverted_index.and | 17, 61, 69, 79 |
| abstract_inverted_index.are | 5, 67 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 34, 106 |
| abstract_inverted_index.the | 22 |
| abstract_inverted_index.use | 13 |
| abstract_inverted_index.(ML) | 50 |
| abstract_inverted_index.LSTM | 88 |
| abstract_inverted_index.Long | 62, 121 |
| abstract_inverted_index.Mean | 94 |
| abstract_inverted_index.This | 38 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.tool | 105 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.word | 111 |
| abstract_inverted_index.(FPV) | 3 |
| abstract_inverted_index.(RF), | 60, 131 |
| abstract_inverted_index.2.5%, | 100 |
| abstract_inverted_index.Error | 97 |
| abstract_inverted_index.error | 80 |
| abstract_inverted_index.model | 77 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.power | 36, 45, 108, 139 |
| abstract_inverted_index.solar | 1, 114, 134 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.using | 47 |
| abstract_inverted_index.water | 15 |
| abstract_inverted_index.(FPV), | 116 |
| abstract_inverted_index.(LSTM) | 65 |
| abstract_inverted_index.(MAPE) | 98 |
| abstract_inverted_index.(SVR), | 57, 128 |
| abstract_inverted_index.Forest | 59, 130 |
| abstract_inverted_index.Memory | 64, 123 |
| abstract_inverted_index.Models | 52 |
| abstract_inverted_index.Random | 58, 129 |
| abstract_inverted_index.Vector | 55, 126 |
| abstract_inverted_index.energy | 135 |
| abstract_inverted_index.global | 7 |
| abstract_inverted_index.making | 101 |
| abstract_inverted_index.output | 46, 140 |
| abstract_inverted_index.(LSTM), | 124 |
| abstract_inverted_index.Support | 54, 125 |
| abstract_inverted_index.cooling | 19 |
| abstract_inverted_index.energy, | 133 |
| abstract_inverted_index.factors | 26 |
| abstract_inverted_index.feature | 75 |
| abstract_inverted_index.gaining | 6 |
| abstract_inverted_index.machine | 48, 119 |
| abstract_inverted_index.metrics | 81 |
| abstract_inverted_index.natural | 18 |
| abstract_inverted_index.results | 85 |
| abstract_inverted_index.systems | 4, 29 |
| abstract_inverted_index.Absolute | 95 |
| abstract_inverted_index.Floating | 113 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accuracy | 91 |
| abstract_inverted_index.accurate | 35 |
| abstract_inverted_index.achieves | 89 |
| abstract_inverted_index.analysis | 73 |
| abstract_inverted_index.detailed | 72 |
| abstract_inverted_index.effects. | 20 |
| abstract_inverted_index.floating | 0 |
| abstract_inverted_index.learning | 49 |
| abstract_inverted_index.networks | 66 |
| abstract_inverted_index.presents | 30 |
| abstract_inverted_index.superior | 90 |
| abstract_inverted_index.surfaces | 16 |
| abstract_inverted_index.affecting | 27 |
| abstract_inverted_index.analysis, | 138 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.challenge | 33 |
| abstract_inverted_index.compared. | 70 |
| abstract_inverted_index.developed | 68 |
| abstract_inverted_index.efficient | 12 |
| abstract_inverted_index.including | 53 |
| abstract_inverted_index.learning, | 120 |
| abstract_inverted_index.promising | 104 |
| abstract_inverted_index.renewable | 132 |
| abstract_inverted_index.Percentage | 96 |
| abstract_inverted_index.Regression | 56, 127 |
| abstract_inverted_index.Short-Term | 63, 122 |
| abstract_inverted_index.presented. | 83 |
| abstract_inverted_index.short-term | 41, 117 |
| abstract_inverted_index.demonstrate | 86 |
| abstract_inverted_index.forecasting | 42 |
| abstract_inverted_index.importance, | 76 |
| abstract_inverted_index.management. | 109 |
| abstract_inverted_index.prediction. | 141 |
| abstract_inverted_index.significant | 32 |
| abstract_inverted_index.techniques. | 51 |
| abstract_inverted_index.time-series | 137 |
| abstract_inverted_index.variability | 23 |
| abstract_inverted_index.forecasting, | 118, 136 |
| abstract_inverted_index.forecasting. | 37 |
| abstract_inverted_index.investigates | 40 |
| abstract_inverted_index.performance, | 78 |
| abstract_inverted_index.photovoltaic | 2, 115 |
| abstract_inverted_index.environmental | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.11894405 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |