Application of machine learning on optical fibre distributed sensing for power line applications Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1117/12.2666050
We present a study on the application of machine learning to optical fibre distributed sensing, with data recovered using a state-of-the-art, commercial BOTDR distributed sensing system; temperature information was extracted from the power line distribution networks that are part of the Electricity Authority of Cyprus. A machine learning approach was implemented for the prediction task of finding points of abnormal behaviour, mimicking the power cable joints that are prone to failure, along with general monitoring for unusual behaviour and potential cable fault conditions; the task is a binary classification one. Labels “0/1” were assigned to the BOTDR measurements, with “1” corresponding to data points in space and time for which the signal showcased a problematic scenario, such as that recorded by optical fibres that are collocated with power cables where the fibre’s temperature measurement increases to dangerously high values, and conversely “0” for all other scenarios. The algorithm’s base is a variation of the state-of-the-art transformer architecture, which depends solely on attention mechanisms. The field data recovered show the potential of the algorithm to predict spatiotemporally problematic points, using the temperature measurements of the collocated fibre.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/12.2666050
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378802028
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378802028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/12.2666050Digital Object Identifier
- Title
-
Application of machine learning on optical fibre distributed sensing for power line applicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-31Full publication date if available
- Authors
-
Kyriacos Kalli, Andreas A. Ioannou, Georgios Panaretou, Charalambos Kouzoupou, Maria C. Argyrou, Sotirios Chatzis, Michalis Agathocleous, Antreas Dionysiou, Efstathios Stavrakis, Nicolas NicolaouList of authors in order
- Landing page
-
https://doi.org/10.1117/12.2666050Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/20.500.14279/30643Direct OA link when available
- Concepts
-
Computer science, Transformer, Optical fiber, Temperature measurement, Power cable, Artificial intelligence, Fault (geology), Fault detection and isolation, Power (physics), Real-time computing, Electronic engineering, Electrical engineering, Voltage, Engineering, Telecommunications, Materials science, Physics, Actuator, Seismology, Geology, Layer (electronics), Quantum mechanics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378802028 |
|---|---|
| doi | https://doi.org/10.1117/12.2666050 |
| ids.doi | https://doi.org/10.1117/12.2666050 |
| ids.openalex | https://openalex.org/W4378802028 |
| fwci | 0.1658839 |
| type | article |
| title | Application of machine learning on optical fibre distributed sensing for power line applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 28 |
| biblio.first_page | 28 |
| topics[0].id | https://openalex.org/T10205 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Fiber Optic Sensors |
| topics[1].id | https://openalex.org/T11429 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9735999703407288 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Semiconductor Lasers and Optical Devices |
| topics[2].id | https://openalex.org/T10232 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9678000211715698 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Optical Network Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6082616448402405 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5385926961898804 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C194232370 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5205234289169312 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q162 |
| concepts[2].display_name | Optical fiber |
| concepts[3].id | https://openalex.org/C72293138 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4879721999168396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q909741 |
| concepts[3].display_name | Temperature measurement |
| concepts[4].id | https://openalex.org/C2777772068 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46475353837013245 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1939150 |
| concepts[4].display_name | Power cable |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45899656414985657 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C175551986 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43313902616500854 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[6].display_name | Fault (geology) |
| concepts[7].id | https://openalex.org/C152745839 |
| concepts[7].level | 3 |
| concepts[7].score | 0.431160569190979 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5438153 |
| concepts[7].display_name | Fault detection and isolation |
| concepts[8].id | https://openalex.org/C163258240 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4133874177932739 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[8].display_name | Power (physics) |
| concepts[9].id | https://openalex.org/C79403827 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3891390860080719 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[9].display_name | Real-time computing |
| concepts[10].id | https://openalex.org/C24326235 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33964452147483826 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[10].display_name | Electronic engineering |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2833406329154968 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.27183932065963745 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22351953387260437 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1487157642841339 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12138590216636658 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C172707124 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q423488 |
| concepts[17].display_name | Actuator |
| concepts[18].id | https://openalex.org/C165205528 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[18].display_name | Seismology |
| concepts[19].id | https://openalex.org/C127313418 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[19].display_name | Geology |
| concepts[20].id | https://openalex.org/C2779227376 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[20].display_name | Layer (electronics) |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C159985019 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[22].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6082616448402405 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5385926961898804 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/optical-fiber |
| keywords[2].score | 0.5205234289169312 |
| keywords[2].display_name | Optical fiber |
| keywords[3].id | https://openalex.org/keywords/temperature-measurement |
| keywords[3].score | 0.4879721999168396 |
| keywords[3].display_name | Temperature measurement |
| keywords[4].id | https://openalex.org/keywords/power-cable |
| keywords[4].score | 0.46475353837013245 |
| keywords[4].display_name | Power cable |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.45899656414985657 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/fault |
| keywords[6].score | 0.43313902616500854 |
| keywords[6].display_name | Fault (geology) |
| keywords[7].id | https://openalex.org/keywords/fault-detection-and-isolation |
| keywords[7].score | 0.431160569190979 |
| keywords[7].display_name | Fault detection and isolation |
| keywords[8].id | https://openalex.org/keywords/power |
| keywords[8].score | 0.4133874177932739 |
| keywords[8].display_name | Power (physics) |
| keywords[9].id | https://openalex.org/keywords/real-time-computing |
| keywords[9].score | 0.3891390860080719 |
| keywords[9].display_name | Real-time computing |
| keywords[10].id | https://openalex.org/keywords/electronic-engineering |
| keywords[10].score | 0.33964452147483826 |
| keywords[10].display_name | Electronic engineering |
| keywords[11].id | https://openalex.org/keywords/electrical-engineering |
| keywords[11].score | 0.2833406329154968 |
| keywords[11].display_name | Electrical engineering |
| keywords[12].id | https://openalex.org/keywords/voltage |
| keywords[12].score | 0.27183932065963745 |
| keywords[12].display_name | Voltage |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.22351953387260437 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.1487157642841339 |
| keywords[14].display_name | Telecommunications |
| keywords[15].id | https://openalex.org/keywords/materials-science |
| keywords[15].score | 0.12138590216636658 |
| keywords[15].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1117/12.2666050 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optical Sensors 2023 |
| locations[0].landing_page_url | https://doi.org/10.1117/12.2666050 |
| locations[1].id | pmh:oai:ktisis.cut.ac.cy:20.500.14279/30643 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400897 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Ktisis at Cyprus University of Technology (Cyprus University of Technology) |
| locations[1].source.host_organization | https://openalex.org/I163151358 |
| locations[1].source.host_organization_name | Cyprus University of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I163151358 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/20.500.14279/30643 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030937227 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4541-092X |
| authorships[0].author.display_name | Kyriacos Kalli |
| authorships[0].countries | CY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163151358 |
| authorships[0].affiliations[0].raw_affiliation_string | Cyprus Univ. of Technology (Cyprus) |
| authorships[0].institutions[0].id | https://openalex.org/I163151358 |
| authorships[0].institutions[0].ror | https://ror.org/05qt8tf94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163151358 |
| authorships[0].institutions[0].country_code | CY |
| authorships[0].institutions[0].display_name | Cyprus University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kyriacos Kalli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cyprus Univ. of Technology (Cyprus) |
| authorships[1].author.id | https://openalex.org/A5008739783 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Andreas A. Ioannou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas A. Ioannou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5092052449 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Georgios Panaretou |
| authorships[2].countries | CY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I163151358 |
| authorships[2].affiliations[0].raw_affiliation_string | Cyprus Univ. of Technology (Cyprus) |
| authorships[2].institutions[0].id | https://openalex.org/I163151358 |
| authorships[2].institutions[0].ror | https://ror.org/05qt8tf94 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I163151358 |
| authorships[2].institutions[0].country_code | CY |
| authorships[2].institutions[0].display_name | Cyprus University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Georgios Panaretou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cyprus Univ. of Technology (Cyprus) |
| authorships[3].author.id | https://openalex.org/A5014787866 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Charalambos Kouzoupou |
| authorships[3].countries | CY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163151358 |
| authorships[3].affiliations[0].raw_affiliation_string | Cyprus Univ. of Technology (Cyprus) |
| authorships[3].institutions[0].id | https://openalex.org/I163151358 |
| authorships[3].institutions[0].ror | https://ror.org/05qt8tf94 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163151358 |
| authorships[3].institutions[0].country_code | CY |
| authorships[3].institutions[0].display_name | Cyprus University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Charalambos Kouzoupou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Cyprus Univ. of Technology (Cyprus) |
| authorships[4].author.id | https://openalex.org/A5019332577 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9296-4453 |
| authorships[4].author.display_name | Maria C. Argyrou |
| authorships[4].countries | CY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I163151358 |
| authorships[4].affiliations[0].raw_affiliation_string | Cyprus Univ. of Technology (Cyprus) |
| authorships[4].institutions[0].id | https://openalex.org/I163151358 |
| authorships[4].institutions[0].ror | https://ror.org/05qt8tf94 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I163151358 |
| authorships[4].institutions[0].country_code | CY |
| authorships[4].institutions[0].display_name | Cyprus University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Maria Argyrou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Cyprus Univ. of Technology (Cyprus) |
| authorships[5].author.id | https://openalex.org/A5040795718 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4956-4013 |
| authorships[5].author.display_name | Sotirios Chatzis |
| authorships[5].countries | CY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I163151358 |
| authorships[5].affiliations[0].raw_affiliation_string | Cyprus Univ. of Technology (Cyprus) |
| authorships[5].institutions[0].id | https://openalex.org/I163151358 |
| authorships[5].institutions[0].ror | https://ror.org/05qt8tf94 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I163151358 |
| authorships[5].institutions[0].country_code | CY |
| authorships[5].institutions[0].display_name | Cyprus University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sotirios Chatzis |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Cyprus Univ. of Technology (Cyprus) |
| authorships[6].author.id | https://openalex.org/A5102885257 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3557-0196 |
| authorships[6].author.display_name | Michalis Agathocleous |
| authorships[6].affiliations[0].raw_affiliation_string | Resoloupe Ltd. (Cyprus) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Michalis Agathocleous |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Resoloupe Ltd. (Cyprus) |
| authorships[7].author.id | https://openalex.org/A5047172111 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6517-8462 |
| authorships[7].author.display_name | Antreas Dionysiou |
| authorships[7].affiliations[0].raw_affiliation_string | Resoloupe Ltd. (Cyprus) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Antreas Dionysiou |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Resoloupe Ltd. (Cyprus) |
| authorships[8].author.id | https://openalex.org/A5015479492 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9213-7690 |
| authorships[8].author.display_name | Efstathios Stavrakis |
| authorships[8].affiliations[0].raw_affiliation_string | Algolysis Ltd. (Cyprus) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Efstathios Stavrakis |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Algolysis Ltd. (Cyprus) |
| authorships[9].author.id | https://openalex.org/A5020913819 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7540-784X |
| authorships[9].author.display_name | Nicolas Nicolaou |
| authorships[9].affiliations[0].raw_affiliation_string | Algolysis Ltd. (Cyprus) |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Nicolas Nicolaou |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Algolysis Ltd. (Cyprus) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/20.500.14279/30643 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Application of machine learning on optical fibre distributed sensing for power line applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10205 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Fiber Optic Sensors |
| related_works | https://openalex.org/W2382415248, https://openalex.org/W2977657329, https://openalex.org/W2359764472, https://openalex.org/W2910881060, https://openalex.org/W4306952024, https://openalex.org/W3137212223, https://openalex.org/W2777865722, https://openalex.org/W2808146095, https://openalex.org/W4237733452, https://openalex.org/W3111448228 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:ktisis.cut.ac.cy:20.500.14279/30643 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400897 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Ktisis at Cyprus University of Technology (Cyprus University of Technology) |
| best_oa_location.source.host_organization | https://openalex.org/I163151358 |
| best_oa_location.source.host_organization_name | Cyprus University of Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I163151358 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/20.500.14279/30643 |
| primary_location.id | doi:10.1117/12.2666050 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optical Sensors 2023 |
| primary_location.landing_page_url | https://doi.org/10.1117/12.2666050 |
| publication_date | 2023-05-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 45 |
| abstract_inverted_index.a | 2, 19, 86, 113, 150 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 117 |
| abstract_inverted_index.by | 120 |
| abstract_inverted_index.in | 104 |
| abstract_inverted_index.is | 85, 149 |
| abstract_inverted_index.of | 7, 39, 43, 55, 58, 152, 170, 182 |
| abstract_inverted_index.on | 4, 160 |
| abstract_inverted_index.to | 10, 69, 94, 101, 135, 173 |
| abstract_inverted_index.The | 146, 163 |
| abstract_inverted_index.all | 143 |
| abstract_inverted_index.and | 78, 106, 139 |
| abstract_inverted_index.are | 37, 67, 124 |
| abstract_inverted_index.for | 51, 75, 108, 142 |
| abstract_inverted_index.the | 5, 31, 40, 52, 62, 83, 95, 110, 130, 153, 168, 171, 179, 183 |
| abstract_inverted_index.was | 28, 49 |
| abstract_inverted_index.base | 148 |
| abstract_inverted_index.data | 16, 102, 165 |
| abstract_inverted_index.from | 30 |
| abstract_inverted_index.high | 137 |
| abstract_inverted_index.line | 33 |
| abstract_inverted_index.one. | 89 |
| abstract_inverted_index.part | 38 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.such | 116 |
| abstract_inverted_index.task | 54, 84 |
| abstract_inverted_index.that | 36, 66, 118, 123 |
| abstract_inverted_index.time | 107 |
| abstract_inverted_index.were | 92 |
| abstract_inverted_index.with | 15, 72, 98, 126 |
| abstract_inverted_index.BOTDR | 22, 96 |
| abstract_inverted_index.along | 71 |
| abstract_inverted_index.cable | 64, 80 |
| abstract_inverted_index.fault | 81 |
| abstract_inverted_index.fibre | 12 |
| abstract_inverted_index.field | 164 |
| abstract_inverted_index.other | 144 |
| abstract_inverted_index.power | 32, 63, 127 |
| abstract_inverted_index.prone | 68 |
| abstract_inverted_index.space | 105 |
| abstract_inverted_index.study | 3 |
| abstract_inverted_index.using | 18, 178 |
| abstract_inverted_index.where | 129 |
| abstract_inverted_index.which | 109, 157 |
| abstract_inverted_index.Labels | 90 |
| abstract_inverted_index.binary | 87 |
| abstract_inverted_index.cables | 128 |
| abstract_inverted_index.fibre. | 185 |
| abstract_inverted_index.fibres | 122 |
| abstract_inverted_index.joints | 65 |
| abstract_inverted_index.points | 57, 103 |
| abstract_inverted_index.signal | 111 |
| abstract_inverted_index.solely | 159 |
| abstract_inverted_index.Cyprus. | 44 |
| abstract_inverted_index.depends | 158 |
| abstract_inverted_index.finding | 56 |
| abstract_inverted_index.general | 73 |
| abstract_inverted_index.machine | 8, 46 |
| abstract_inverted_index.optical | 11, 121 |
| abstract_inverted_index.points, | 177 |
| abstract_inverted_index.predict | 174 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.sensing | 24 |
| abstract_inverted_index.system; | 25 |
| abstract_inverted_index.unusual | 76 |
| abstract_inverted_index.values, | 138 |
| abstract_inverted_index.“0” | 141 |
| abstract_inverted_index.“1” | 99 |
| abstract_inverted_index.abnormal | 59 |
| abstract_inverted_index.approach | 48 |
| abstract_inverted_index.assigned | 93 |
| abstract_inverted_index.failure, | 70 |
| abstract_inverted_index.learning | 9, 47 |
| abstract_inverted_index.networks | 35 |
| abstract_inverted_index.recorded | 119 |
| abstract_inverted_index.sensing, | 14 |
| abstract_inverted_index.Authority | 42 |
| abstract_inverted_index.algorithm | 172 |
| abstract_inverted_index.attention | 161 |
| abstract_inverted_index.behaviour | 77 |
| abstract_inverted_index.extracted | 29 |
| abstract_inverted_index.fibre’s | 131 |
| abstract_inverted_index.increases | 134 |
| abstract_inverted_index.mimicking | 61 |
| abstract_inverted_index.potential | 79, 169 |
| abstract_inverted_index.recovered | 17, 166 |
| abstract_inverted_index.scenario, | 115 |
| abstract_inverted_index.showcased | 112 |
| abstract_inverted_index.variation | 151 |
| abstract_inverted_index.“0/1” | 91 |
| abstract_inverted_index.behaviour, | 60 |
| abstract_inverted_index.collocated | 125, 184 |
| abstract_inverted_index.commercial | 21 |
| abstract_inverted_index.conversely | 140 |
| abstract_inverted_index.monitoring | 74 |
| abstract_inverted_index.prediction | 53 |
| abstract_inverted_index.scenarios. | 145 |
| abstract_inverted_index.Electricity | 41 |
| abstract_inverted_index.application | 6 |
| abstract_inverted_index.conditions; | 82 |
| abstract_inverted_index.dangerously | 136 |
| abstract_inverted_index.distributed | 13, 23 |
| abstract_inverted_index.implemented | 50 |
| abstract_inverted_index.information | 27 |
| abstract_inverted_index.measurement | 133 |
| abstract_inverted_index.mechanisms. | 162 |
| abstract_inverted_index.problematic | 114, 176 |
| abstract_inverted_index.temperature | 26, 132, 180 |
| abstract_inverted_index.transformer | 155 |
| abstract_inverted_index.distribution | 34 |
| abstract_inverted_index.measurements | 181 |
| abstract_inverted_index.algorithm’s | 147 |
| abstract_inverted_index.architecture, | 156 |
| abstract_inverted_index.corresponding | 100 |
| abstract_inverted_index.measurements, | 97 |
| abstract_inverted_index.classification | 88 |
| abstract_inverted_index.spatiotemporally | 175 |
| abstract_inverted_index.state-of-the-art | 154 |
| abstract_inverted_index.state-of-the-art, | 20 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.44156553 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |