Application of Manifold Learning to Selection of Different Galaxy Populations and Scaling Relation Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.07354
The growing volume of data produced by large astronomical surveys necessitates the development of efficient analysis techniques capable of effectively managing high-dimensional datasets. This study addresses this need by demonstrating some applications of manifold learning and dimensionality reduction techniques, specifically the Self-Organizing Map (SOM), on the optical+NIR SED space of galaxies, with a focus on sample comparison, selection biases, and predictive power using a small subset. To this end, we utilize a large photometric sample from the five CANDELS fields and a subset with spectroscopic measurements from the KECK MOSDEF survey in two redshift bins at $z\sim1.5$ and $z\sim2.2$. We trained SOM with the photometric data and mapped the spectroscopic data onto it as our study case. We found that MOSDEF targets do not cover all SED shapes existing in the SOM. Our findings reveal that Active Galactic Nuclei (AGN) within the MOSDEF sample are mapped onto the more massive regions of the SOM, confirming previous studies and known selection biases towards higher-mass, less dusty galaxies. Furthermore, SOM were utilized to map measured spectroscopic features, examining the relationship between metallicity variations and galaxy mass. Our analysis confirmed that more massive galaxies exhibit lower [OIII]/H$β$ and [OIII]/[OII] ratios and higher H$α$/H$β$ ratios, consistent with the known mass-metallicity relation. These findings highlight the effectiveness of SOM in analyzing and visualizing complex, multi-dimensional datasets, emphasizing their potential in data-driven astronomical studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.07354
- https://arxiv.org/pdf/2410.07354
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403363977
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403363977Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.07354Digital Object Identifier
- Title
-
Application of Manifold Learning to Selection of Different Galaxy Populations and Scaling Relation AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-09Full publication date if available
- Authors
-
Sogol Sanjaripour, Shoubaneh Hemmati, Bahram Mobasher, Gabriela Canalizo, B. C. Barish, Irene Shivaei, Alison L. Coil, Nima Chartab, Marziye Jafariyazani, Naveen A. Reddy, Mojegan AzadiList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.07354Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.07354Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.07354Direct OA link when available
- Concepts
-
Relation (database), Selection (genetic algorithm), Scaling, Manifold (fluid mechanics), Physics, Mathematics, Artificial intelligence, Computer science, Geometry, Data mining, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403363977 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.07354 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.07354 |
| ids.openalex | https://openalex.org/W4403363977 |
| fwci | |
| type | preprint |
| title | Application of Manifold Learning to Selection of Different Galaxy Populations and Scaling Relation Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.4683000147342682 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C25343380 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6443547010421753 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[0].display_name | Relation (database) |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6290665864944458 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C99844830 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6158484816551208 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[2].display_name | Scaling |
| concepts[3].id | https://openalex.org/C529865628 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4936881959438324 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[3].display_name | Manifold (fluid mechanics) |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3271617293357849 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.321212500333786 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2806755006313324 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2738233208656311 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08695292472839355 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07682031393051147 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.06540107727050781 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C78519656 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[11].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/relation |
| keywords[0].score | 0.6443547010421753 |
| keywords[0].display_name | Relation (database) |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.6290665864944458 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/scaling |
| keywords[2].score | 0.6158484816551208 |
| keywords[2].display_name | Scaling |
| keywords[3].id | https://openalex.org/keywords/manifold |
| keywords[3].score | 0.4936881959438324 |
| keywords[3].display_name | Manifold (fluid mechanics) |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.3271617293357849 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.321212500333786 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2806755006313324 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2738233208656311 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/geometry |
| keywords[8].score | 0.08695292472839355 |
| keywords[8].display_name | Geometry |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.07682031393051147 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.06540107727050781 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.07354 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.07354 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.07354 |
| locations[1].id | doi:10.48550/arxiv.2410.07354 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.07354 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111396641 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sogol Sanjaripour |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sanjaripour, Sogol |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080513335 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2226-5395 |
| authorships[1].author.display_name | Shoubaneh Hemmati |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hemmati, Shoubaneh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044374924 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5846-4404 |
| authorships[2].author.display_name | Bahram Mobasher |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mobasher, Bahram |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056839648 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4693-6157 |
| authorships[3].author.display_name | Gabriela Canalizo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Canalizo, Gabriela |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5040898326 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6386-7371 |
| authorships[4].author.display_name | B. C. Barish |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Barish, Barry |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5063756342 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4702-7561 |
| authorships[5].author.display_name | Irene Shivaei |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shivaei, Irene |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034370718 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2583-5894 |
| authorships[6].author.display_name | Alison L. Coil |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Coil, Alison L. |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5082770932 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3691-937X |
| authorships[7].author.display_name | Nima Chartab |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chartab, Nima |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5003361814 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8019-6661 |
| authorships[8].author.display_name | Marziye Jafariyazani |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jafariyazani, Marziye |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5057083130 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9687-4973 |
| authorships[9].author.display_name | Naveen A. Reddy |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Reddy, Naveen A. |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5001392372 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6004-9728 |
| authorships[10].author.display_name | Mojegan Azadi |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Azadi, Mojegan |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.07354 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-13T00:00:00 |
| display_name | Application of Manifold Learning to Selection of Different Galaxy Populations and Scaling Relation Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.4683000147342682 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.07354 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.07354 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.07354 |
| primary_location.id | pmh:oai:arXiv.org:2410.07354 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.07354 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.07354 |
| publication_date | 2024-10-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 63, 71, 81 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.We | 99, 117 |
| abstract_inverted_index.as | 113 |
| abstract_inverted_index.at | 95 |
| abstract_inverted_index.by | 6, 28 |
| abstract_inverted_index.do | 122 |
| abstract_inverted_index.in | 91, 129, 214, 224 |
| abstract_inverted_index.it | 112 |
| abstract_inverted_index.of | 3, 13, 18, 32, 49, 151, 212 |
| abstract_inverted_index.on | 44, 54 |
| abstract_inverted_index.to | 170 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.Map | 42 |
| abstract_inverted_index.Our | 132, 184 |
| abstract_inverted_index.SED | 47, 126 |
| abstract_inverted_index.SOM | 101, 167, 213 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 125 |
| abstract_inverted_index.and | 35, 59, 80, 97, 106, 157, 181, 194, 197, 216 |
| abstract_inverted_index.are | 144 |
| abstract_inverted_index.map | 171 |
| abstract_inverted_index.not | 123 |
| abstract_inverted_index.our | 114 |
| abstract_inverted_index.the | 11, 40, 45, 76, 87, 103, 108, 130, 141, 147, 152, 176, 203, 210 |
| abstract_inverted_index.two | 92 |
| abstract_inverted_index.KECK | 88 |
| abstract_inverted_index.SOM, | 153 |
| abstract_inverted_index.SOM. | 131 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.bins | 94 |
| abstract_inverted_index.data | 4, 105, 110 |
| abstract_inverted_index.end, | 68 |
| abstract_inverted_index.five | 77 |
| abstract_inverted_index.from | 75, 86 |
| abstract_inverted_index.less | 163 |
| abstract_inverted_index.more | 148, 188 |
| abstract_inverted_index.need | 27 |
| abstract_inverted_index.onto | 111, 146 |
| abstract_inverted_index.some | 30 |
| abstract_inverted_index.that | 119, 135, 187 |
| abstract_inverted_index.this | 26, 67 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.with | 51, 83, 102, 202 |
| abstract_inverted_index.(AGN) | 139 |
| abstract_inverted_index.These | 207 |
| abstract_inverted_index.case. | 116 |
| abstract_inverted_index.cover | 124 |
| abstract_inverted_index.dusty | 164 |
| abstract_inverted_index.focus | 53 |
| abstract_inverted_index.found | 118 |
| abstract_inverted_index.known | 158, 204 |
| abstract_inverted_index.large | 7, 72 |
| abstract_inverted_index.lower | 192 |
| abstract_inverted_index.mass. | 183 |
| abstract_inverted_index.power | 61 |
| abstract_inverted_index.small | 64 |
| abstract_inverted_index.space | 48 |
| abstract_inverted_index.study | 24, 115 |
| abstract_inverted_index.their | 222 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.(SOM), | 43 |
| abstract_inverted_index.Active | 136 |
| abstract_inverted_index.MOSDEF | 89, 120, 142 |
| abstract_inverted_index.Nuclei | 138 |
| abstract_inverted_index.biases | 160 |
| abstract_inverted_index.fields | 79 |
| abstract_inverted_index.galaxy | 182 |
| abstract_inverted_index.higher | 198 |
| abstract_inverted_index.mapped | 107, 145 |
| abstract_inverted_index.ratios | 196 |
| abstract_inverted_index.reveal | 134 |
| abstract_inverted_index.sample | 55, 74, 143 |
| abstract_inverted_index.shapes | 127 |
| abstract_inverted_index.subset | 82 |
| abstract_inverted_index.survey | 90 |
| abstract_inverted_index.volume | 2 |
| abstract_inverted_index.within | 140 |
| abstract_inverted_index.CANDELS | 78 |
| abstract_inverted_index.between | 178 |
| abstract_inverted_index.biases, | 58 |
| abstract_inverted_index.capable | 17 |
| abstract_inverted_index.exhibit | 191 |
| abstract_inverted_index.growing | 1 |
| abstract_inverted_index.massive | 149, 189 |
| abstract_inverted_index.ratios, | 200 |
| abstract_inverted_index.regions | 150 |
| abstract_inverted_index.studies | 156 |
| abstract_inverted_index.subset. | 65 |
| abstract_inverted_index.surveys | 9 |
| abstract_inverted_index.targets | 121 |
| abstract_inverted_index.towards | 161 |
| abstract_inverted_index.trained | 100 |
| abstract_inverted_index.utilize | 70 |
| abstract_inverted_index.Galactic | 137 |
| abstract_inverted_index.analysis | 15, 185 |
| abstract_inverted_index.complex, | 218 |
| abstract_inverted_index.existing | 128 |
| abstract_inverted_index.findings | 133, 208 |
| abstract_inverted_index.galaxies | 190 |
| abstract_inverted_index.learning | 34 |
| abstract_inverted_index.managing | 20 |
| abstract_inverted_index.manifold | 33 |
| abstract_inverted_index.measured | 172 |
| abstract_inverted_index.previous | 155 |
| abstract_inverted_index.produced | 5 |
| abstract_inverted_index.redshift | 93 |
| abstract_inverted_index.studies. | 227 |
| abstract_inverted_index.utilized | 169 |
| abstract_inverted_index.addresses | 25 |
| abstract_inverted_index.analyzing | 215 |
| abstract_inverted_index.confirmed | 186 |
| abstract_inverted_index.datasets, | 220 |
| abstract_inverted_index.datasets. | 22 |
| abstract_inverted_index.efficient | 14 |
| abstract_inverted_index.examining | 175 |
| abstract_inverted_index.features, | 174 |
| abstract_inverted_index.galaxies, | 50 |
| abstract_inverted_index.galaxies. | 165 |
| abstract_inverted_index.highlight | 209 |
| abstract_inverted_index.potential | 223 |
| abstract_inverted_index.reduction | 37 |
| abstract_inverted_index.relation. | 206 |
| abstract_inverted_index.selection | 57, 159 |
| abstract_inverted_index.$z\sim1.5$ | 96 |
| abstract_inverted_index.confirming | 154 |
| abstract_inverted_index.consistent | 201 |
| abstract_inverted_index.predictive | 60 |
| abstract_inverted_index.techniques | 16 |
| abstract_inverted_index.variations | 180 |
| abstract_inverted_index.$z\sim2.2$. | 98 |
| abstract_inverted_index.H$α$/H$β$ | 199 |
| abstract_inverted_index.comparison, | 56 |
| abstract_inverted_index.data-driven | 225 |
| abstract_inverted_index.development | 12 |
| abstract_inverted_index.effectively | 19 |
| abstract_inverted_index.emphasizing | 221 |
| abstract_inverted_index.metallicity | 179 |
| abstract_inverted_index.optical+NIR | 46 |
| abstract_inverted_index.photometric | 73, 104 |
| abstract_inverted_index.techniques, | 38 |
| abstract_inverted_index.visualizing | 217 |
| abstract_inverted_index.Furthermore, | 166 |
| abstract_inverted_index.[OIII]/H$β$ | 193 |
| abstract_inverted_index.[OIII]/[OII] | 195 |
| abstract_inverted_index.applications | 31 |
| abstract_inverted_index.astronomical | 8, 226 |
| abstract_inverted_index.higher-mass, | 162 |
| abstract_inverted_index.measurements | 85 |
| abstract_inverted_index.necessitates | 10 |
| abstract_inverted_index.relationship | 177 |
| abstract_inverted_index.specifically | 39 |
| abstract_inverted_index.demonstrating | 29 |
| abstract_inverted_index.effectiveness | 211 |
| abstract_inverted_index.spectroscopic | 84, 109, 173 |
| abstract_inverted_index.dimensionality | 36 |
| abstract_inverted_index.Self-Organizing | 41 |
| abstract_inverted_index.high-dimensional | 21 |
| abstract_inverted_index.mass-metallicity | 205 |
| abstract_inverted_index.multi-dimensional | 219 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |