APPLICATION OF TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR THE CLASSIFICATION OF CROPS ON SENTINEL-2 TIME SERIES Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020
The recent development of Earth observation systems – like the Copernicus Sentinels – has provided access to satellite data with high spatial and temporal resolution. This is a key component for the accurate monitoring of state and changes in land use and land cover. In this research, the crops classification was performed by implementing two deep neural networks based on structured data. Despite the wide availability of optical satellite imagery, such as Landsat and Sentinel-2, the limitations of high quality tagged data make the training of machine learning methods very difficult. For this purpose, we have created and labeled a dataset of the crops in Slovenia for the year 2017. With the selected methods we are able to correctly classify 87% of all cultures. Similar studies have already been carried out in the past, but are limited to smaller regions or a smaller number of crop types.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdf
- OA Status
- diamond
- Cited By
- 22
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3049631588
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3049631588Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020Digital Object Identifier
- Title
-
APPLICATION OF TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR THE CLASSIFICATION OF CROPS ON SENTINEL-2 TIME SERIESWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-14Full publication date if available
- Authors
-
Matej Račič, Krištof Oštir, Devis Peressutti, A. Zupanc, Luka Čehovin ZajcList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdfDirect OA link when available
- Concepts
-
Convolutional neural network, Earth observation, Land cover, Satellite, Remote sensing, Temporal resolution, Computer science, Deep learning, Artificial neural network, Satellite imagery, Temporal database, Time series, Key (lock), Artificial intelligence, Machine learning, Data mining, Pattern recognition (psychology), Land use, Geography, Quantum mechanics, Aerospace engineering, Physics, Computer security, Civil engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 8, 2023: 5, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3049631588 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| ids.mag | 3049631588 |
| ids.openalex | https://openalex.org/W3049631588 |
| fwci | 1.91882478 |
| type | article |
| title | APPLICATION OF TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR THE CLASSIFICATION OF CROPS ON SENTINEL-2 TIME SERIES |
| biblio.issue | |
| biblio.volume | XLIII-B2-2020 |
| biblio.last_page | 1342 |
| biblio.first_page | 1337 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9843999743461609 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9825999736785889 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.974399983882904 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6947261691093445 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C39399123 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6610652208328247 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1348989 |
| concepts[1].display_name | Earth observation |
| concepts[2].id | https://openalex.org/C2780648208 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6416794061660767 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3001793 |
| concepts[2].display_name | Land cover |
| concepts[3].id | https://openalex.org/C19269812 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5647922158241272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[3].display_name | Satellite |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5467178225517273 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C119666444 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5352180004119873 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5977280 |
| concepts[5].display_name | Temporal resolution |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5240583419799805 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5144093632698059 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5016560554504395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C2778102629 |
| concepts[9].level | 2 |
| concepts[9].score | 0.472948282957077 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[9].display_name | Satellite imagery |
| concepts[10].id | https://openalex.org/C77277458 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4240919351577759 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1969246 |
| concepts[10].display_name | Temporal database |
| concepts[11].id | https://openalex.org/C151406439 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4179947078227997 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[11].display_name | Time series |
| concepts[12].id | https://openalex.org/C26517878 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4164109528064728 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[12].display_name | Key (lock) |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39940962195396423 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3548486530780792 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3348326086997986 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C153180895 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3214421272277832 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[16].display_name | Pattern recognition (psychology) |
| concepts[17].id | https://openalex.org/C4792198 |
| concepts[17].level | 2 |
| concepts[17].score | 0.30957114696502686 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[17].display_name | Land use |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.19737979769706726 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C146978453 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[20].display_name | Aerospace engineering |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C38652104 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[22].display_name | Computer security |
| concepts[23].id | https://openalex.org/C147176958 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[23].display_name | Civil engineering |
| concepts[24].id | https://openalex.org/C127413603 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[24].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6947261691093445 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/earth-observation |
| keywords[1].score | 0.6610652208328247 |
| keywords[1].display_name | Earth observation |
| keywords[2].id | https://openalex.org/keywords/land-cover |
| keywords[2].score | 0.6416794061660767 |
| keywords[2].display_name | Land cover |
| keywords[3].id | https://openalex.org/keywords/satellite |
| keywords[3].score | 0.5647922158241272 |
| keywords[3].display_name | Satellite |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.5467178225517273 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/temporal-resolution |
| keywords[5].score | 0.5352180004119873 |
| keywords[5].display_name | Temporal resolution |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5240583419799805 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5144093632698059 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.5016560554504395 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/satellite-imagery |
| keywords[9].score | 0.472948282957077 |
| keywords[9].display_name | Satellite imagery |
| keywords[10].id | https://openalex.org/keywords/temporal-database |
| keywords[10].score | 0.4240919351577759 |
| keywords[10].display_name | Temporal database |
| keywords[11].id | https://openalex.org/keywords/time-series |
| keywords[11].score | 0.4179947078227997 |
| keywords[11].display_name | Time series |
| keywords[12].id | https://openalex.org/keywords/key |
| keywords[12].score | 0.4164109528064728 |
| keywords[12].display_name | Key (lock) |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.39940962195396423 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.3548486530780792 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.3348326086997986 |
| keywords[15].display_name | Data mining |
| keywords[16].id | https://openalex.org/keywords/pattern-recognition |
| keywords[16].score | 0.3214421272277832 |
| keywords[16].display_name | Pattern recognition (psychology) |
| keywords[17].id | https://openalex.org/keywords/land-use |
| keywords[17].score | 0.30957114696502686 |
| keywords[17].display_name | Land use |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.19737979769706726 |
| keywords[18].display_name | Geography |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| locations[1].id | pmh:oai:doaj.org/article:06284d17c80c40d5a9bb863093778423 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B2-2020, Pp 1337-1342 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/06284d17c80c40d5a9bb863093778423 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5003769980 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-5029-2812 |
| authorships[0].author.display_name | Matej Račič |
| authorships[0].countries | SI |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I153976015, https://openalex.org/I4210091918 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia |
| authorships[0].institutions[0].id | https://openalex.org/I4210091918 |
| authorships[0].institutions[0].ror | https://ror.org/00fq5tf47 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210091918 |
| authorships[0].institutions[0].country_code | SI |
| authorships[0].institutions[0].display_name | Geodetic Institute of Slovenia |
| authorships[0].institutions[1].id | https://openalex.org/I153976015 |
| authorships[0].institutions[1].ror | https://ror.org/05njb9z20 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I153976015 |
| authorships[0].institutions[1].country_code | SI |
| authorships[0].institutions[1].display_name | University of Ljubljana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. Račič |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia |
| authorships[1].author.id | https://openalex.org/A5060870697 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4887-7798 |
| authorships[1].author.display_name | Krištof Oštir |
| authorships[1].countries | SI |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I153976015, https://openalex.org/I4210091918 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia |
| authorships[1].institutions[0].id | https://openalex.org/I4210091918 |
| authorships[1].institutions[0].ror | https://ror.org/00fq5tf47 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210091918 |
| authorships[1].institutions[0].country_code | SI |
| authorships[1].institutions[0].display_name | Geodetic Institute of Slovenia |
| authorships[1].institutions[1].id | https://openalex.org/I153976015 |
| authorships[1].institutions[1].ror | https://ror.org/05njb9z20 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I153976015 |
| authorships[1].institutions[1].country_code | SI |
| authorships[1].institutions[1].display_name | University of Ljubljana |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | K. Oštir |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia |
| authorships[2].author.id | https://openalex.org/A5018821263 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4660-0576 |
| authorships[2].author.display_name | Devis Peressutti |
| authorships[2].affiliations[0].raw_affiliation_string | Sinergise d.o.o., Ljubljana, Slovenia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | D. Peressutti |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sinergise d.o.o., Ljubljana, Slovenia |
| authorships[3].author.id | https://openalex.org/A5073632133 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3697-7839 |
| authorships[3].author.display_name | A. Zupanc |
| authorships[3].affiliations[0].raw_affiliation_string | Sinergise d.o.o., Ljubljana, Slovenia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | A. Zupanc |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sinergise d.o.o., Ljubljana, Slovenia |
| authorships[4].author.id | https://openalex.org/A5070543072 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2823-272X |
| authorships[4].author.display_name | Luka Čehovin Zajc |
| authorships[4].countries | SI |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I153976015 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Computer and Information Science, University of Ljubljana, Slovenia |
| authorships[4].institutions[0].id | https://openalex.org/I153976015 |
| authorships[4].institutions[0].ror | https://ror.org/05njb9z20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I153976015 |
| authorships[4].institutions[0].country_code | SI |
| authorships[4].institutions[0].display_name | University of Ljubljana |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | L. Čehovin Zajc |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Computer and Information Science, University of Ljubljana, Slovenia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | APPLICATION OF TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR THE CLASSIFICATION OF CROPS ON SENTINEL-2 TIME SERIES |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9843999743461609 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W4250495829, https://openalex.org/W2711511741, https://openalex.org/W2115125467, https://openalex.org/W1999548673, https://openalex.org/W2158991791, https://openalex.org/W3205068641, https://openalex.org/W3108730420, https://openalex.org/W3098233728, https://openalex.org/W2615806692, https://openalex.org/W2776208758 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| primary_location.id | doi:10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1337/2020/isprs-archives-XLIII-B2-2020-1337-2020.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1337-2020 |
| publication_date | 2020-08-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2792764867, https://openalex.org/W2911964244, https://openalex.org/W2768348081, https://openalex.org/W2900573306, https://openalex.org/W45880376, https://openalex.org/W3104839310, https://openalex.org/W2548003659, https://openalex.org/W2963131120 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 28, 100, 142 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.as | 72 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 39, 105, 132 |
| abstract_inverted_index.is | 27 |
| abstract_inverted_index.of | 4, 35, 67, 78, 86, 102, 122, 145 |
| abstract_inverted_index.on | 60 |
| abstract_inverted_index.or | 141 |
| abstract_inverted_index.to | 17, 118, 138 |
| abstract_inverted_index.we | 95, 115 |
| abstract_inverted_index.87% | 121 |
| abstract_inverted_index.For | 92 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.all | 123 |
| abstract_inverted_index.and | 23, 37, 42, 74, 98 |
| abstract_inverted_index.are | 116, 136 |
| abstract_inverted_index.but | 135 |
| abstract_inverted_index.for | 31, 107 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.key | 29 |
| abstract_inverted_index.out | 131 |
| abstract_inverted_index.the | 10, 32, 48, 64, 76, 84, 103, 108, 112, 133 |
| abstract_inverted_index.two | 55 |
| abstract_inverted_index.use | 41 |
| abstract_inverted_index.was | 51 |
| abstract_inverted_index.– | 8, 13 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.With | 111 |
| abstract_inverted_index.able | 117 |
| abstract_inverted_index.been | 129 |
| abstract_inverted_index.crop | 146 |
| abstract_inverted_index.data | 19, 82 |
| abstract_inverted_index.deep | 56 |
| abstract_inverted_index.have | 96, 127 |
| abstract_inverted_index.high | 21, 79 |
| abstract_inverted_index.land | 40, 43 |
| abstract_inverted_index.like | 9 |
| abstract_inverted_index.make | 83 |
| abstract_inverted_index.such | 71 |
| abstract_inverted_index.this | 46, 93 |
| abstract_inverted_index.very | 90 |
| abstract_inverted_index.wide | 65 |
| abstract_inverted_index.with | 20 |
| abstract_inverted_index.year | 109 |
| abstract_inverted_index.2017. | 110 |
| abstract_inverted_index.Earth | 5 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.crops | 49, 104 |
| abstract_inverted_index.data. | 62 |
| abstract_inverted_index.past, | 134 |
| abstract_inverted_index.state | 36 |
| abstract_inverted_index.access | 16 |
| abstract_inverted_index.cover. | 44 |
| abstract_inverted_index.neural | 57 |
| abstract_inverted_index.number | 144 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.tagged | 81 |
| abstract_inverted_index.types. | 147 |
| abstract_inverted_index.Despite | 63 |
| abstract_inverted_index.Landsat | 73 |
| abstract_inverted_index.Similar | 125 |
| abstract_inverted_index.already | 128 |
| abstract_inverted_index.carried | 130 |
| abstract_inverted_index.changes | 38 |
| abstract_inverted_index.created | 97 |
| abstract_inverted_index.dataset | 101 |
| abstract_inverted_index.labeled | 99 |
| abstract_inverted_index.limited | 137 |
| abstract_inverted_index.machine | 87 |
| abstract_inverted_index.methods | 89, 114 |
| abstract_inverted_index.optical | 68 |
| abstract_inverted_index.quality | 80 |
| abstract_inverted_index.regions | 140 |
| abstract_inverted_index.smaller | 139, 143 |
| abstract_inverted_index.spatial | 22 |
| abstract_inverted_index.studies | 126 |
| abstract_inverted_index.systems | 7 |
| abstract_inverted_index.Slovenia | 106 |
| abstract_inverted_index.accurate | 33 |
| abstract_inverted_index.classify | 120 |
| abstract_inverted_index.imagery, | 70 |
| abstract_inverted_index.learning | 88 |
| abstract_inverted_index.networks | 58 |
| abstract_inverted_index.provided | 15 |
| abstract_inverted_index.purpose, | 94 |
| abstract_inverted_index.selected | 113 |
| abstract_inverted_index.temporal | 24 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Sentinels | 12 |
| abstract_inverted_index.component | 30 |
| abstract_inverted_index.correctly | 119 |
| abstract_inverted_index.cultures. | 124 |
| abstract_inverted_index.performed | 52 |
| abstract_inverted_index.research, | 47 |
| abstract_inverted_index.satellite | 18, 69 |
| abstract_inverted_index.Copernicus | 11 |
| abstract_inverted_index.difficult. | 91 |
| abstract_inverted_index.monitoring | 34 |
| abstract_inverted_index.structured | 61 |
| abstract_inverted_index.Sentinel-2, | 75 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.limitations | 77 |
| abstract_inverted_index.observation | 6 |
| abstract_inverted_index.resolution. | 25 |
| abstract_inverted_index.availability | 66 |
| abstract_inverted_index.implementing | 54 |
| abstract_inverted_index.classification | 50 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.86255943 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |