Applied Machine Learning to Anomaly Detection in Enterprise Purchase Processes: A Hybrid Approach Using Clustering and Isolation Forest Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/info16030177
In the era of increasing digitalisation, organisations face the critical challenge of detecting anomalies in large volumes of data, which may indicate suspicious activities. To address this challenge, audit engagements are conducted regularly, and internal auditors and purchasing specialists seek innovative methods to streamline these processes. This study introduces a methodology to prioritise the investigation of anomalies identified in two large real-world purchase datasets. The primary objective is to enhance the effectiveness of companies’ control efforts and improve the efficiency of anomaly detection tasks. The approach begins with a comprehensive exploratory data analysis, followed by the application of unsupervised machine learning techniques to identify anomalies. A univariate analysis is performed using the z-Score index and the DBSCAN algorithm, while multivariate analysis employs k-Means clustering and Isolation Forest algorithms. Additionally, the Silhouette index is used to evaluate the quality of the clustering, ensuring each method produces a prioritised list of candidate transactions for further review. To refine this process, an ensemble prioritisation framework is developed, integrating multiple methods. Furthermore, explainability tools such as SHAP are utilised to provide actionable insights and support specialists in interpreting the results. This methodology aims to empower organisations to detect anomalies more effectively and streamline the audit process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info16030177
- https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142
- OA Status
- gold
- Cited By
- 5
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407965775
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407965775Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info16030177Digital Object Identifier
- Title
-
Applied Machine Learning to Anomaly Detection in Enterprise Purchase Processes: A Hybrid Approach Using Clustering and Isolation ForestWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-26Full publication date if available
- Authors
-
Antonio Herreros-Martínez, Rafael Magdalena‐Benedito, Joan Vila‐Francés, Antonio J. Serrano-López, Sonia Pérez-Dı́az, José-Javier Martínez-HerráizList of authors in order
- Landing page
-
https://doi.org/10.3390/info16030177Publisher landing page
- PDF URL
-
https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142Direct OA link when available
- Concepts
-
Cluster analysis, Isolation (microbiology), Anomaly detection, Computer science, Artificial intelligence, Machine learning, Data mining, Biology, MicrobiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407965775 |
|---|---|
| doi | https://doi.org/10.3390/info16030177 |
| ids.doi | https://doi.org/10.3390/info16030177 |
| ids.openalex | https://openalex.org/W4407965775 |
| fwci | 24.09872573 |
| type | article |
| title | Applied Machine Learning to Anomaly Detection in Enterprise Purchase Processes: A Hybrid Approach Using Clustering and Isolation Forest |
| biblio.issue | 3 |
| biblio.volume | 16 |
| biblio.last_page | 177 |
| biblio.first_page | 177 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11652 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Imbalanced Data Classification Techniques |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.716140866279602 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C2775941552 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6435437202453613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25212305 |
| concepts[1].display_name | Isolation (microbiology) |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6048997640609741 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5184707045555115 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4782111346721649 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44967252016067505 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3233897089958191 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.07533767819404602 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C89423630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7193 |
| concepts[8].display_name | Microbiology |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.716140866279602 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/isolation |
| keywords[1].score | 0.6435437202453613 |
| keywords[1].display_name | Isolation (microbiology) |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.6048997640609741 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5184707045555115 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4782111346721649 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.44967252016067505 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.3233897089958191 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.07533767819404602 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/info16030177 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info16030177 |
| locations[1].id | pmh:oai:doaj.org/article:bc5d312489d84e66ba481048864dd5f5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Information, Vol 16, Iss 3, p 177 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/bc5d312489d84e66ba481048864dd5f5 |
| locations[2].id | pmh:oai:roderic.uv.es:10550/108290 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400245 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Repository of Digital Objects for Teaching Research and Culture (University of Valencia) |
| locations[2].source.host_organization | https://openalex.org/I16097986 |
| locations[2].source.host_organization_name | Universitat de València |
| locations[2].source.host_organization_lineage | https://openalex.org/I16097986 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | journal article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Herreros Martínez, Antonio Magdalena Benedicto, José Rafael Vila Francés, Joan Serrano López, Antonio José Pérez Díaz, Sonia Martínez Herráiz, José Javier 2025 Applied Machine Learning to Anomaly Detection in Enterprise Purchase Processes: A Hybrid Approach Using Clustering and Isolation Forest Information (Switzerland) 16 3 177-1 19 |
| locations[2].landing_page_url | https://hdl.handle.net/10550/108290 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5098823841 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Antonio Herreros-Martínez |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I16097986 |
| authorships[0].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universitat de València |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antonio Herreros-Martínez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[1].author.id | https://openalex.org/A5013174077 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3752-8231 |
| authorships[1].author.display_name | Rafael Magdalena‐Benedito |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I16097986 |
| authorships[1].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universitat de València |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rafael Magdalena-Benedicto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[2].author.id | https://openalex.org/A5051693047 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8293-8235 |
| authorships[2].author.display_name | Joan Vila‐Francés |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[2].affiliations[0].raw_affiliation_string | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I16097986 |
| authorships[2].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universitat de València |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joan Vila-Francés |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[3].author.id | https://openalex.org/A5068170350 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3863-8611 |
| authorships[3].author.display_name | Antonio J. Serrano-López |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I16097986 |
| authorships[3].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universitat de València |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Antonio José Serrano-López |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrical Engineering Department, University of Valencia, Ave Universitats, s/n. Burjassot, 46100 Valencia, Spain |
| authorships[4].author.id | https://openalex.org/A5031696800 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0174-5325 |
| authorships[4].author.display_name | Sonia Pérez-Dı́az |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189268942 |
| authorships[4].affiliations[0].raw_affiliation_string | Physics and Mathematics Department, University of Alcalá de Henares, Campus Tecnológico Universitario, Alcalá de Henares, 28805 Madrid, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I189268942 |
| authorships[4].institutions[0].ror | https://ror.org/04pmn0e78 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189268942 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad de Alcalá |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sonia Pérez-Díaz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Physics and Mathematics Department, University of Alcalá de Henares, Campus Tecnológico Universitario, Alcalá de Henares, 28805 Madrid, Spain |
| authorships[5].author.id | https://openalex.org/A5090469237 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2351-7163 |
| authorships[5].author.display_name | José-Javier Martínez-Herráiz |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I189268942 |
| authorships[5].affiliations[0].raw_affiliation_string | Computer Science Department, University of Alcalá de Henares, Campus Tecnológico Universitario, Alcalá de Henares, 28805 Madrid, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I189268942 |
| authorships[5].institutions[0].ror | https://ror.org/04pmn0e78 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I189268942 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Universidad de Alcalá |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | José Javier Martínez-Herráiz |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Computer Science Department, University of Alcalá de Henares, Campus Tecnológico Universitario, Alcalá de Henares, 28805 Madrid, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Applied Machine Learning to Anomaly Detection in Enterprise Purchase Processes: A Hybrid Approach Using Clustering and Isolation Forest |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2394779770, https://openalex.org/W4298130764, https://openalex.org/W2804364458, https://openalex.org/W2415102733, https://openalex.org/W4386784740, https://openalex.org/W2132641928, https://openalex.org/W4310225030, https://openalex.org/W2056273954, https://openalex.org/W2090259340, https://openalex.org/W2072346427 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/info16030177 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info16030177 |
| primary_location.id | doi:10.3390/info16030177 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2078-2489/16/3/177/pdf?version=1740574142 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info16030177 |
| publication_date | 2025-02-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2185360688, https://openalex.org/W4252733614, https://openalex.org/W2610250061, https://openalex.org/W6626238005, https://openalex.org/W2604599489, https://openalex.org/W2074923226, https://openalex.org/W1995443851, https://openalex.org/W2955586526, https://openalex.org/W2591317003, https://openalex.org/W2910931863, https://openalex.org/W2122646361, https://openalex.org/W4233577561, https://openalex.org/W6693864794, https://openalex.org/W1987971958, https://openalex.org/W1673310716, https://openalex.org/W2740924709, https://openalex.org/W6679890963, https://openalex.org/W2126751256, https://openalex.org/W2084512860, https://openalex.org/W2100678256, https://openalex.org/W6790587931, https://openalex.org/W2135564639, https://openalex.org/W2270954860 |
| referenced_works_count | 23 |
| abstract_inverted_index.A | 105 |
| abstract_inverted_index.a | 49, 88, 145 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 24, 154 |
| abstract_inverted_index.an | 158 |
| abstract_inverted_index.as | 171 |
| abstract_inverted_index.by | 94 |
| abstract_inverted_index.in | 14, 58, 182 |
| abstract_inverted_index.is | 67, 108, 132, 162 |
| abstract_inverted_index.of | 3, 11, 17, 55, 72, 80, 97, 138, 148 |
| abstract_inverted_index.to | 42, 51, 68, 102, 134, 175, 189, 192 |
| abstract_inverted_index.The | 64, 84 |
| abstract_inverted_index.and | 33, 36, 76, 114, 124, 179, 197 |
| abstract_inverted_index.are | 30, 173 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.for | 151 |
| abstract_inverted_index.may | 20 |
| abstract_inverted_index.the | 1, 8, 53, 70, 78, 95, 111, 115, 129, 136, 139, 184, 199 |
| abstract_inverted_index.two | 59 |
| abstract_inverted_index.SHAP | 172 |
| abstract_inverted_index.This | 46, 186 |
| abstract_inverted_index.aims | 188 |
| abstract_inverted_index.data | 91 |
| abstract_inverted_index.each | 142 |
| abstract_inverted_index.face | 7 |
| abstract_inverted_index.list | 147 |
| abstract_inverted_index.more | 195 |
| abstract_inverted_index.seek | 39 |
| abstract_inverted_index.such | 170 |
| abstract_inverted_index.this | 26, 156 |
| abstract_inverted_index.used | 133 |
| abstract_inverted_index.with | 87 |
| abstract_inverted_index.audit | 28, 200 |
| abstract_inverted_index.data, | 18 |
| abstract_inverted_index.index | 113, 131 |
| abstract_inverted_index.large | 15, 60 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.tools | 169 |
| abstract_inverted_index.using | 110 |
| abstract_inverted_index.which | 19 |
| abstract_inverted_index.while | 118 |
| abstract_inverted_index.DBSCAN | 116 |
| abstract_inverted_index.Forest | 126 |
| abstract_inverted_index.begins | 86 |
| abstract_inverted_index.detect | 193 |
| abstract_inverted_index.method | 143 |
| abstract_inverted_index.refine | 155 |
| abstract_inverted_index.tasks. | 83 |
| abstract_inverted_index.address | 25 |
| abstract_inverted_index.anomaly | 81 |
| abstract_inverted_index.control | 74 |
| abstract_inverted_index.efforts | 75 |
| abstract_inverted_index.employs | 121 |
| abstract_inverted_index.empower | 190 |
| abstract_inverted_index.enhance | 69 |
| abstract_inverted_index.further | 152 |
| abstract_inverted_index.improve | 77 |
| abstract_inverted_index.k-Means | 122 |
| abstract_inverted_index.machine | 99 |
| abstract_inverted_index.methods | 41 |
| abstract_inverted_index.primary | 65 |
| abstract_inverted_index.provide | 176 |
| abstract_inverted_index.quality | 137 |
| abstract_inverted_index.review. | 153 |
| abstract_inverted_index.support | 180 |
| abstract_inverted_index.volumes | 16 |
| abstract_inverted_index.z-Score | 112 |
| abstract_inverted_index.analysis | 107, 120 |
| abstract_inverted_index.approach | 85 |
| abstract_inverted_index.auditors | 35 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.ensemble | 159 |
| abstract_inverted_index.ensuring | 141 |
| abstract_inverted_index.evaluate | 135 |
| abstract_inverted_index.followed | 93 |
| abstract_inverted_index.identify | 103 |
| abstract_inverted_index.indicate | 21 |
| abstract_inverted_index.insights | 178 |
| abstract_inverted_index.internal | 34 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.methods. | 166 |
| abstract_inverted_index.multiple | 165 |
| abstract_inverted_index.process, | 157 |
| abstract_inverted_index.process. | 201 |
| abstract_inverted_index.produces | 144 |
| abstract_inverted_index.purchase | 62 |
| abstract_inverted_index.results. | 185 |
| abstract_inverted_index.utilised | 174 |
| abstract_inverted_index.Isolation | 125 |
| abstract_inverted_index.analysis, | 92 |
| abstract_inverted_index.anomalies | 13, 56, 194 |
| abstract_inverted_index.candidate | 149 |
| abstract_inverted_index.challenge | 10 |
| abstract_inverted_index.conducted | 31 |
| abstract_inverted_index.datasets. | 63 |
| abstract_inverted_index.detecting | 12 |
| abstract_inverted_index.detection | 82 |
| abstract_inverted_index.framework | 161 |
| abstract_inverted_index.objective | 66 |
| abstract_inverted_index.performed | 109 |
| abstract_inverted_index.Silhouette | 130 |
| abstract_inverted_index.actionable | 177 |
| abstract_inverted_index.algorithm, | 117 |
| abstract_inverted_index.anomalies. | 104 |
| abstract_inverted_index.challenge, | 27 |
| abstract_inverted_index.clustering | 123 |
| abstract_inverted_index.developed, | 163 |
| abstract_inverted_index.efficiency | 79 |
| abstract_inverted_index.identified | 57 |
| abstract_inverted_index.increasing | 4 |
| abstract_inverted_index.innovative | 40 |
| abstract_inverted_index.introduces | 48 |
| abstract_inverted_index.prioritise | 52 |
| abstract_inverted_index.processes. | 45 |
| abstract_inverted_index.purchasing | 37 |
| abstract_inverted_index.real-world | 61 |
| abstract_inverted_index.regularly, | 32 |
| abstract_inverted_index.streamline | 43, 198 |
| abstract_inverted_index.suspicious | 22 |
| abstract_inverted_index.techniques | 101 |
| abstract_inverted_index.univariate | 106 |
| abstract_inverted_index.activities. | 23 |
| abstract_inverted_index.algorithms. | 127 |
| abstract_inverted_index.application | 96 |
| abstract_inverted_index.clustering, | 140 |
| abstract_inverted_index.effectively | 196 |
| abstract_inverted_index.engagements | 29 |
| abstract_inverted_index.exploratory | 90 |
| abstract_inverted_index.integrating | 164 |
| abstract_inverted_index.methodology | 50, 187 |
| abstract_inverted_index.prioritised | 146 |
| abstract_inverted_index.specialists | 38, 181 |
| abstract_inverted_index.Furthermore, | 167 |
| abstract_inverted_index.companies’ | 73 |
| abstract_inverted_index.interpreting | 183 |
| abstract_inverted_index.multivariate | 119 |
| abstract_inverted_index.transactions | 150 |
| abstract_inverted_index.unsupervised | 98 |
| abstract_inverted_index.Additionally, | 128 |
| abstract_inverted_index.comprehensive | 89 |
| abstract_inverted_index.effectiveness | 71 |
| abstract_inverted_index.investigation | 54 |
| abstract_inverted_index.organisations | 6, 191 |
| abstract_inverted_index.explainability | 168 |
| abstract_inverted_index.prioritisation | 160 |
| abstract_inverted_index.digitalisation, | 5 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.99214168 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |