Applying Behavioral Biometrics to Mobile Device Use Measurement in Children: Evaluating the Impact of Training Data Size, Proximity, and Type on Model Performance Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s41347-025-00537-8
Objective Passive sensing applications are limited by their inability to determine who is using a device, a critical concern in child mobile device use research, where devices are often shared between siblings or between a child and their parent. Our previous work leveraged behavioral biometrics to identify a target child user; however, it is unknown what type of training data is necessary for optimal model performance. This study evaluated model performance across different characteristics of training data. Methods Thirty-six children (11.3 ± 0.9 years, 56% female) self-selected a video or a game on iPads for 10 min while laying and for another 5 min while sitting. The SensorLog application captured iPad accelerometer and gyroscope data while the child interacted with the device. Machine learning algorithms including Neural Network (NN), Random Forest (RF), k-Nearest Neighbors (k-NN), and SwipeFormer were applied to determine the most important aspects of training data to optimize model performance. The aspects of training data evaluated included (1) varying the length (i.e., seconds of training data), (2) varying the user position (i.e., sitting, laying), and (3) varying the time proximity between training and testing data. F1 score was used to evaluate model performance. Results The SwipeFormer F1 scores were lowest when the training data was further from the test data (0 when training data was 11 min away from test data) and highest when training data was close to test data (0.91 when training data was the minute preceding test data). The SwipeFormer F1 scores were highest when predicting the user laying from laying (0.97) and sitting from sitting (0.94), and lowest when predicting the user sitting from laying (0) and laying from sitting (0). The length of training data had little impact on performance, with a SwipeFormer F1 score of 0.91 when training on one minute of data and a SwipeFormer F1 score of 0.94 when training on twelve minutes of data. Discussion Because researchers would likely be predicting users at different timepoints than their training data, research should focus on improving model performance for identifying users independent of time proximity for training and test data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s41347-025-00537-8
- https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdf
- OA Status
- hybrid
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412067123
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412067123Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s41347-025-00537-8Digital Object Identifier
- Title
-
Applying Behavioral Biometrics to Mobile Device Use Measurement in Children: Evaluating the Impact of Training Data Size, Proximity, and Type on Model PerformanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-07Full publication date if available
- Authors
-
Olivia Finnegan, Hongpeng Yang, Bridget Armstrong, Srihari Nelakuditi, Rahul Ghosal, J. W. White, Aliye B. Cepni, Zifei Zhong, Yan Tong, Michael W. Beets, Elizabeth L. Adams, Sarah Burkart, Erik A. Willis, R. Glenn WeaverList of authors in order
- Landing page
-
https://doi.org/10.1007/s41347-025-00537-8Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdfDirect OA link when available
- Concepts
-
Biometrics, Mobile device, Computer science, Artificial intelligence, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412067123 |
|---|---|
| doi | https://doi.org/10.1007/s41347-025-00537-8 |
| ids.doi | https://doi.org/10.1007/s41347-025-00537-8 |
| ids.openalex | https://openalex.org/W4412067123 |
| fwci | 0.0 |
| type | article |
| title | Applying Behavioral Biometrics to Mobile Device Use Measurement in Children: Evaluating the Impact of Training Data Size, Proximity, and Type on Model Performance |
| awards[0].id | https://openalex.org/G2549437874 |
| awards[0].funder_id | https://openalex.org/F4320337354 |
| awards[0].display_name | |
| awards[0].funder_award_id | T32-GM145226 |
| awards[0].funder_display_name | National Institute of General Medical Sciences |
| awards[1].id | https://openalex.org/G126590926 |
| awards[1].funder_id | https://openalex.org/F4320337354 |
| awards[1].display_name | |
| awards[1].funder_award_id | T32-GM081740 |
| awards[1].funder_display_name | National Institute of General Medical Sciences |
| awards[2].id | https://openalex.org/G1364456557 |
| awards[2].funder_id | https://openalex.org/F4320337357 |
| awards[2].display_name | |
| awards[2].funder_award_id | R01DK129215 |
| awards[2].funder_display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| awards[3].id | https://openalex.org/G1773755149 |
| awards[3].funder_id | https://openalex.org/F4320337357 |
| awards[3].display_name | |
| awards[3].funder_award_id | F31DK136205 |
| awards[3].funder_display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12060 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3304 |
| topics[0].subfield.display_name | Education |
| topics[0].display_name | Child Development and Digital Technology |
| topics[1].id | https://openalex.org/T11800 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | User Authentication and Security Systems |
| topics[2].id | https://openalex.org/T11519 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.982699990272522 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3202 |
| topics[2].subfield.display_name | Applied Psychology |
| topics[2].display_name | Digital Mental Health Interventions |
| funders[0].id | https://openalex.org/F4320310846 |
| funders[0].ror | https://ror.org/02b6qw903 |
| funders[0].display_name | University of South Carolina |
| funders[1].id | https://openalex.org/F4320337354 |
| funders[1].ror | https://ror.org/04q48ey07 |
| funders[1].display_name | National Institute of General Medical Sciences |
| funders[2].id | https://openalex.org/F4320337357 |
| funders[2].ror | https://ror.org/00adh9b73 |
| funders[2].display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| is_xpac | False |
| apc_list.value | 2290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C184297639 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8104247450828552 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[0].display_name | Biometrics |
| concepts[1].id | https://openalex.org/C186967261 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47759485244750977 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5082128 |
| concepts[1].display_name | Mobile device |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4520936608314514 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.22037047147750854 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C136764020 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09049752354621887 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[4].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/biometrics |
| keywords[0].score | 0.8104247450828552 |
| keywords[0].display_name | Biometrics |
| keywords[1].id | https://openalex.org/keywords/mobile-device |
| keywords[1].score | 0.47759485244750977 |
| keywords[1].display_name | Mobile device |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4520936608314514 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.22037047147750854 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/world-wide-web |
| keywords[4].score | 0.09049752354621887 |
| keywords[4].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.1007/s41347-025-00537-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169117 |
| locations[0].source.issn | 2366-5963 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2366-5963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Technology in Behavioral Science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Technology in Behavioral Science |
| locations[0].landing_page_url | https://doi.org/10.1007/s41347-025-00537-8 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052089004 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0625-1479 |
| authorships[0].author.display_name | Olivia Finnegan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[0].institutions[0].id | https://openalex.org/I155781252 |
| authorships[0].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of South Carolina |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Olivia L. Finnegan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[1].author.id | https://openalex.org/A5081832999 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hongpeng Yang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[1].institutions[0].id | https://openalex.org/I155781252 |
| authorships[1].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of South Carolina |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongpeng Yang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[2].author.id | https://openalex.org/A5042459564 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1909-8170 |
| authorships[2].author.display_name | Bridget Armstrong |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[2].institutions[0].id | https://openalex.org/I155781252 |
| authorships[2].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of South Carolina |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bridget Armstrong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[3].author.id | https://openalex.org/A5070972371 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5990-394X |
| authorships[3].author.display_name | Srihari Nelakuditi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[3].institutions[0].id | https://openalex.org/I155781252 |
| authorships[3].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of South Carolina |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Srihari Nelakuditi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[4].author.id | https://openalex.org/A5076145211 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0939-4731 |
| authorships[4].author.display_name | Rahul Ghosal |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29201, USA |
| authorships[4].institutions[0].id | https://openalex.org/I155781252 |
| authorships[4].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of South Carolina |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rahul Ghosal |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Epidemiology and Biostatistics, University of South Carolina, 915 Greene Street, Columbia, SC, 29201, USA |
| authorships[5].author.id | https://openalex.org/A5010908472 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7616-594X |
| authorships[5].author.display_name | J. W. White |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[5].institutions[0].id | https://openalex.org/I155781252 |
| authorships[5].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of South Carolina |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | James W. White |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[6].author.id | https://openalex.org/A5001102630 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6303-8378 |
| authorships[6].author.display_name | Aliye B. Cepni |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[6].institutions[0].id | https://openalex.org/I155781252 |
| authorships[6].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of South Carolina |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Aliye B. Cepni |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[7].author.id | https://openalex.org/A5100296270 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Zifei Zhong |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[7].institutions[0].id | https://openalex.org/I155781252 |
| authorships[7].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of South Carolina |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zifei Zhong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[8].author.id | https://openalex.org/A5063566469 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6677-8646 |
| authorships[8].author.display_name | Yan Tong |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[8].institutions[0].id | https://openalex.org/I155781252 |
| authorships[8].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of South Carolina |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yan Tong |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA |
| authorships[9].author.id | https://openalex.org/A5054636184 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6728-6742 |
| authorships[9].author.display_name | Michael W. Beets |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[9].institutions[0].id | https://openalex.org/I155781252 |
| authorships[9].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of South Carolina |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Michael W. Beets |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[10].author.id | https://openalex.org/A5037996177 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5602-8470 |
| authorships[10].author.display_name | Elizabeth L. Adams |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[10].institutions[0].id | https://openalex.org/I155781252 |
| authorships[10].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | University of South Carolina |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Elizabeth L. Adams |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[11].author.id | https://openalex.org/A5059249810 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-0840-1680 |
| authorships[11].author.display_name | Sarah Burkart |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[11].institutions[0].id | https://openalex.org/I155781252 |
| authorships[11].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | University of South Carolina |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Sarah Burkart |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[12].author.id | https://openalex.org/A5077004869 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-0114-1660 |
| authorships[12].author.display_name | Erik A. Willis |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[12].affiliations[0].raw_affiliation_string | Center for Health Promotion and Disease Prevention, University of North Carolina Chapel Hill, 1700 M.L.K. Jr Blvd #7426, Chapel Hill, NC, 27514, USA |
| authorships[12].institutions[0].id | https://openalex.org/I114027177 |
| authorships[12].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Erik A. Willis |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Center for Health Promotion and Disease Prevention, University of North Carolina Chapel Hill, 1700 M.L.K. Jr Blvd #7426, Chapel Hill, NC, 27514, USA |
| authorships[13].author.id | https://openalex.org/A5007041326 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-5889-974X |
| authorships[13].author.display_name | R. Glenn Weaver |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[13].affiliations[0].raw_affiliation_string | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| authorships[13].institutions[0].id | https://openalex.org/I155781252 |
| authorships[13].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | University of South Carolina |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | R. Glenn Weaver |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Exercise Science, University of South Carolina, 921 Assembly Street, Columbia, SC, 29201, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Applying Behavioral Biometrics to Mobile Device Use Measurement in Children: Evaluating the Impact of Training Data Size, Proximity, and Type on Model Performance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12060 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3304 |
| primary_topic.subfield.display_name | Education |
| primary_topic.display_name | Child Development and Digital Technology |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2076845124, https://openalex.org/W2183964146, https://openalex.org/W2379932303, https://openalex.org/W2095239294, https://openalex.org/W3147744369, https://openalex.org/W2062586268, https://openalex.org/W2019582947 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s41347-025-00537-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169117 |
| best_oa_location.source.issn | 2366-5963 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2366-5963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Technology in Behavioral Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Technology in Behavioral Science |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s41347-025-00537-8 |
| primary_location.id | doi:10.1007/s41347-025-00537-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169117 |
| primary_location.source.issn | 2366-5963 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2366-5963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Technology in Behavioral Science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41347-025-00537-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Technology in Behavioral Science |
| primary_location.landing_page_url | https://doi.org/10.1007/s41347-025-00537-8 |
| publication_date | 2025-07-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4246842535, https://openalex.org/W2325135768, https://openalex.org/W3041886411, https://openalex.org/W2757606105, https://openalex.org/W3158160489, https://openalex.org/W3047872373, https://openalex.org/W2079155847, https://openalex.org/W2494214809, https://openalex.org/W4214831372, https://openalex.org/W3166947433, https://openalex.org/W4386805293, https://openalex.org/W3119890983, https://openalex.org/W2942462981, https://openalex.org/W2901073679, https://openalex.org/W4399122507, https://openalex.org/W4391645841, https://openalex.org/W6910586897, https://openalex.org/W4282976169, https://openalex.org/W4406267538, https://openalex.org/W4318305502, https://openalex.org/W2255570509, https://openalex.org/W2900200659, https://openalex.org/W2903532522, https://openalex.org/W2592507844, https://openalex.org/W2058266664, https://openalex.org/W3031640782, https://openalex.org/W2621112366, https://openalex.org/W3030219906, https://openalex.org/W3133119754, https://openalex.org/W2216189124, https://openalex.org/W2913008676, https://openalex.org/W2668140649, https://openalex.org/W4294368214, https://openalex.org/W2001037441, https://openalex.org/W2900584856, https://openalex.org/W3025628315, https://openalex.org/W3024761859, https://openalex.org/W4386726775, https://openalex.org/W2893058726, https://openalex.org/W4281920938 |
| referenced_works_count | 40 |
| abstract_inverted_index.5 | 103 |
| abstract_inverted_index.a | 15, 17, 35, 48, 88, 91, 289, 303 |
| abstract_inverted_index.(0 | 213 |
| abstract_inverted_index.10 | 96 |
| abstract_inverted_index.11 | 218 |
| abstract_inverted_index.F1 | 188, 199, 246, 291, 305 |
| abstract_inverted_index.at | 324 |
| abstract_inverted_index.be | 321 |
| abstract_inverted_index.by | 7 |
| abstract_inverted_index.in | 20 |
| abstract_inverted_index.is | 13, 54, 61 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.of | 58, 75, 146, 155, 166, 280, 293, 300, 307, 314, 342 |
| abstract_inverted_index.on | 93, 286, 297, 311, 334 |
| abstract_inverted_index.or | 33, 90 |
| abstract_inverted_index.to | 10, 46, 140, 149, 192, 231 |
| abstract_inverted_index.± | 82 |
| abstract_inverted_index.(0) | 272 |
| abstract_inverted_index.(1) | 160 |
| abstract_inverted_index.(2) | 169 |
| abstract_inverted_index.(3) | 178 |
| abstract_inverted_index.0.9 | 83 |
| abstract_inverted_index.56% | 85 |
| abstract_inverted_index.Our | 40 |
| abstract_inverted_index.The | 107, 153, 197, 244, 278 |
| abstract_inverted_index.and | 37, 100, 113, 136, 177, 185, 224, 258, 263, 273, 302, 347 |
| abstract_inverted_index.are | 5, 28 |
| abstract_inverted_index.for | 63, 95, 101, 338, 345 |
| abstract_inverted_index.had | 283 |
| abstract_inverted_index.min | 97, 104, 219 |
| abstract_inverted_index.one | 298 |
| abstract_inverted_index.the | 117, 121, 142, 162, 171, 180, 204, 210, 239, 252, 267 |
| abstract_inverted_index.use | 24 |
| abstract_inverted_index.was | 190, 207, 217, 229, 238 |
| abstract_inverted_index.who | 12 |
| abstract_inverted_index.(0). | 277 |
| abstract_inverted_index.0.91 | 294 |
| abstract_inverted_index.0.94 | 308 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.away | 220 |
| abstract_inverted_index.data | 60, 115, 148, 157, 206, 212, 216, 228, 233, 237, 282, 301 |
| abstract_inverted_index.from | 209, 221, 255, 260, 270, 275 |
| abstract_inverted_index.game | 92 |
| abstract_inverted_index.iPad | 111 |
| abstract_inverted_index.most | 143 |
| abstract_inverted_index.test | 211, 222, 232, 242, 348 |
| abstract_inverted_index.than | 327 |
| abstract_inverted_index.time | 181, 343 |
| abstract_inverted_index.type | 57 |
| abstract_inverted_index.used | 191 |
| abstract_inverted_index.user | 172, 253, 268 |
| abstract_inverted_index.were | 138, 201, 248 |
| abstract_inverted_index.what | 56 |
| abstract_inverted_index.when | 203, 214, 226, 235, 250, 265, 295, 309 |
| abstract_inverted_index.with | 120, 288 |
| abstract_inverted_index.work | 42 |
| abstract_inverted_index.(0.91 | 234 |
| abstract_inverted_index.(11.3 | 81 |
| abstract_inverted_index.(NN), | 129 |
| abstract_inverted_index.(RF), | 132 |
| abstract_inverted_index.child | 21, 36, 50, 118 |
| abstract_inverted_index.close | 230 |
| abstract_inverted_index.data) | 223 |
| abstract_inverted_index.data, | 330 |
| abstract_inverted_index.data. | 77, 187, 315, 349 |
| abstract_inverted_index.focus | 333 |
| abstract_inverted_index.iPads | 94 |
| abstract_inverted_index.model | 65, 70, 151, 194, 336 |
| abstract_inverted_index.often | 29 |
| abstract_inverted_index.score | 189, 292, 306 |
| abstract_inverted_index.study | 68 |
| abstract_inverted_index.their | 8, 38, 328 |
| abstract_inverted_index.user; | 51 |
| abstract_inverted_index.users | 323, 340 |
| abstract_inverted_index.using | 14 |
| abstract_inverted_index.video | 89 |
| abstract_inverted_index.where | 26 |
| abstract_inverted_index.while | 98, 105, 116 |
| abstract_inverted_index.would | 319 |
| abstract_inverted_index.(0.97) | 257 |
| abstract_inverted_index.(i.e., | 164, 174 |
| abstract_inverted_index.Forest | 131 |
| abstract_inverted_index.Neural | 127 |
| abstract_inverted_index.Random | 130 |
| abstract_inverted_index.across | 72 |
| abstract_inverted_index.data), | 168 |
| abstract_inverted_index.data). | 243 |
| abstract_inverted_index.device | 23 |
| abstract_inverted_index.impact | 285 |
| abstract_inverted_index.laying | 99, 254, 256, 271, 274 |
| abstract_inverted_index.length | 163, 279 |
| abstract_inverted_index.likely | 320 |
| abstract_inverted_index.little | 284 |
| abstract_inverted_index.lowest | 202, 264 |
| abstract_inverted_index.minute | 240, 299 |
| abstract_inverted_index.mobile | 22 |
| abstract_inverted_index.scores | 200, 247 |
| abstract_inverted_index.shared | 30 |
| abstract_inverted_index.should | 332 |
| abstract_inverted_index.target | 49 |
| abstract_inverted_index.twelve | 312 |
| abstract_inverted_index.years, | 84 |
| abstract_inverted_index.(0.94), | 262 |
| abstract_inverted_index.(k-NN), | 135 |
| abstract_inverted_index.Because | 317 |
| abstract_inverted_index.Machine | 123 |
| abstract_inverted_index.Methods | 78 |
| abstract_inverted_index.Network | 128 |
| abstract_inverted_index.Passive | 2 |
| abstract_inverted_index.Results | 196 |
| abstract_inverted_index.another | 102 |
| abstract_inverted_index.applied | 139 |
| abstract_inverted_index.aspects | 145, 154 |
| abstract_inverted_index.between | 31, 34, 183 |
| abstract_inverted_index.concern | 19 |
| abstract_inverted_index.device, | 16 |
| abstract_inverted_index.device. | 122 |
| abstract_inverted_index.devices | 27 |
| abstract_inverted_index.female) | 86 |
| abstract_inverted_index.further | 208 |
| abstract_inverted_index.highest | 225, 249 |
| abstract_inverted_index.limited | 6 |
| abstract_inverted_index.minutes | 313 |
| abstract_inverted_index.optimal | 64 |
| abstract_inverted_index.parent. | 39 |
| abstract_inverted_index.seconds | 165 |
| abstract_inverted_index.sensing | 3 |
| abstract_inverted_index.sitting | 259, 261, 269, 276 |
| abstract_inverted_index.testing | 186 |
| abstract_inverted_index.unknown | 55 |
| abstract_inverted_index.varying | 161, 170, 179 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.captured | 110 |
| abstract_inverted_index.children | 80 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.evaluate | 193 |
| abstract_inverted_index.however, | 52 |
| abstract_inverted_index.identify | 47 |
| abstract_inverted_index.included | 159 |
| abstract_inverted_index.laying), | 176 |
| abstract_inverted_index.learning | 124 |
| abstract_inverted_index.optimize | 150 |
| abstract_inverted_index.position | 173 |
| abstract_inverted_index.previous | 41 |
| abstract_inverted_index.research | 331 |
| abstract_inverted_index.siblings | 32 |
| abstract_inverted_index.sitting, | 175 |
| abstract_inverted_index.sitting. | 106 |
| abstract_inverted_index.training | 59, 76, 147, 156, 167, 184, 205, 215, 227, 236, 281, 296, 310, 329, 346 |
| abstract_inverted_index.Neighbors | 134 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.SensorLog | 108 |
| abstract_inverted_index.determine | 11, 141 |
| abstract_inverted_index.different | 73, 325 |
| abstract_inverted_index.evaluated | 69, 158 |
| abstract_inverted_index.gyroscope | 114 |
| abstract_inverted_index.important | 144 |
| abstract_inverted_index.improving | 335 |
| abstract_inverted_index.inability | 9 |
| abstract_inverted_index.including | 126 |
| abstract_inverted_index.k-Nearest | 133 |
| abstract_inverted_index.leveraged | 43 |
| abstract_inverted_index.necessary | 62 |
| abstract_inverted_index.preceding | 241 |
| abstract_inverted_index.proximity | 182, 344 |
| abstract_inverted_index.research, | 25 |
| abstract_inverted_index.Discussion | 316 |
| abstract_inverted_index.Thirty-six | 79 |
| abstract_inverted_index.algorithms | 125 |
| abstract_inverted_index.behavioral | 44 |
| abstract_inverted_index.biometrics | 45 |
| abstract_inverted_index.interacted | 119 |
| abstract_inverted_index.predicting | 251, 266, 322 |
| abstract_inverted_index.timepoints | 326 |
| abstract_inverted_index.SwipeFormer | 137, 198, 245, 290, 304 |
| abstract_inverted_index.application | 109 |
| abstract_inverted_index.identifying | 339 |
| abstract_inverted_index.independent | 341 |
| abstract_inverted_index.performance | 71, 337 |
| abstract_inverted_index.researchers | 318 |
| abstract_inverted_index.applications | 4 |
| abstract_inverted_index.performance, | 287 |
| abstract_inverted_index.performance. | 66, 152, 195 |
| abstract_inverted_index.accelerometer | 112 |
| abstract_inverted_index.self-selected | 87 |
| abstract_inverted_index.characteristics | 74 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5052089004, https://openalex.org/A5081832999 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 14 |
| corresponding_institution_ids | https://openalex.org/I155781252 |
| citation_normalized_percentile.value | 0.26234225 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |