Applying deep learning to segmentation of murine lung tumors in pre-clinical micro-computed tomography Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.tranon.2023.101833
Lung cancer remains a leading cause of cancer-related death, but scientists have made great strides in developing new treatments recently, partly owing to the use of genetically engineered mouse models (GEMMs). GEMM tumors represent a translational model that recapitulates human disease better than implanted models because tumors develop spontaneously in the lungs. However, detection of these tumors relies on in vivo imaging tools, specifically micro-Computed Tomography (micro-CT or µCT), and image analysis can be laborious with high inter-user variability. Here we present a deep learning model trained to perform fully automated segmentation of lung tumors without the interference of other soft tissues. Trained and tested on 100 3D µCT images (18,662 slices) that were manually segmented, the model demonstrated a high correlation to manual segmentations on the testing data (r2=0.99, DSC=0.78) and on an independent dataset (n = 12 3D scans or 2328 2D slices, r2=0.97, DSC=0.73). In a comparison against manual segmentation performed by multiple analysts, the model (r2=0.98, DSC=0.78) performed within inter-reader variability (r2=0.79, DSC=0.69) and close to intra-reader variability (r2=0.99, DSC=0.82), all while completing 5+ hours of manual segmentations in 1 minute. Finally, when applied to a real-world longitudinal study (n = 55 mice), the model successfully detected tumor progression over time and the differences in tumor burden between groups induced with different virus titers, aligning well with more traditional analysis methods. In conclusion, we have developed a deep learning model which can perform fast, accurate, and fully automated segmentation of µCT scans of murine lung tumors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.tranon.2023.101833
- OA Status
- gold
- Cited By
- 5
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390031542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390031542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.tranon.2023.101833Digital Object Identifier
- Title
-
Applying deep learning to segmentation of murine lung tumors in pre-clinical micro-computed tomographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-20Full publication date if available
- Authors
-
Mary K. Montgomery, Chong Duan, Lisa K. Manzuk, Stephanie T. Chang, Aiyana Cubias, Sonja N. Brun, Anand Giddabasappa, Ziyue Karen JiangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.tranon.2023.101833Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.tranon.2023.101833Direct OA link when available
- Concepts
-
Segmentation, Computed tomography, Artificial intelligence, Lung, Lung cancer, Medicine, Human lung, Computer science, Deep learning, Pathology, Radiology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390031542 |
|---|---|
| doi | https://doi.org/10.1016/j.tranon.2023.101833 |
| ids.doi | https://doi.org/10.1016/j.tranon.2023.101833 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38128467 |
| ids.openalex | https://openalex.org/W4390031542 |
| fwci | 1.54527483 |
| type | article |
| title | Applying deep learning to segmentation of murine lung tumors in pre-clinical micro-computed tomography |
| biblio.issue | |
| biblio.volume | 40 |
| biblio.last_page | 101833 |
| biblio.first_page | 101833 |
| grants[0].funder | https://openalex.org/F4320307765 |
| grants[0].award_id | |
| grants[0].funder_display_name | Pfizer |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T11287 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer Genomics and Diagnostics |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.986299991607666 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| funders[0].id | https://openalex.org/F4320307765 |
| funders[0].ror | https://ror.org/01xdqrp08 |
| funders[0].display_name | Pfizer |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6987172365188599 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C544519230 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5643264055252075 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[1].display_name | Computed tomography |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4838908612728119 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2777714996 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46886733174324036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[3].display_name | Lung |
| concepts[4].id | https://openalex.org/C2776256026 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46124711632728577 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q47912 |
| concepts[4].display_name | Lung cancer |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4457630217075348 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C2779744229 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4365397095680237 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[6].display_name | Human lung |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.42691391706466675 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4251613914966583 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.30660998821258545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.26505720615386963 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07890582084655762 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6987172365188599 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computed-tomography |
| keywords[1].score | 0.5643264055252075 |
| keywords[1].display_name | Computed tomography |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4838908612728119 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/lung |
| keywords[3].score | 0.46886733174324036 |
| keywords[3].display_name | Lung |
| keywords[4].id | https://openalex.org/keywords/lung-cancer |
| keywords[4].score | 0.46124711632728577 |
| keywords[4].display_name | Lung cancer |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.4457630217075348 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/human-lung |
| keywords[6].score | 0.4365397095680237 |
| keywords[6].display_name | Human lung |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.42691391706466675 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4251613914966583 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.30660998821258545 |
| keywords[9].display_name | Pathology |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.26505720615386963 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.07890582084655762 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1016/j.tranon.2023.101833 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106638657 |
| locations[0].source.issn | 1936-5233, 1944-7124 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1936-5233 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Translational Oncology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Translational Oncology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.tranon.2023.101833 |
| locations[1].id | pmid:38128467 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Translational oncology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38128467 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10776660 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10776660/pdf/main.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Transl Oncol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10776660 |
| locations[3].id | pmh:oai:doaj.org/article:1f6dec55d9d74c09a1a45c10f6dcee86 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Translational Oncology, Vol 40, Iss , Pp 101833- (2024) |
| locations[3].landing_page_url | https://doaj.org/article/1f6dec55d9d74c09a1a45c10f6dcee86 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5001572273 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mary K. Montgomery |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[0].affiliations[0].raw_affiliation_string | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[0].institutions[0].id | https://openalex.org/I180857899 |
| authorships[0].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pfizer (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mary Katherine Montgomery |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[1].author.id | https://openalex.org/A5101431601 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9817-5340 |
| authorships[1].author.display_name | Chong Duan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[1].affiliations[0].raw_affiliation_string | Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States |
| authorships[1].institutions[0].id | https://openalex.org/I180857899 |
| authorships[1].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pfizer (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chong Duan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States |
| authorships[2].author.id | https://openalex.org/A5036907494 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-0127-0339 |
| authorships[2].author.display_name | Lisa K. Manzuk |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[2].affiliations[0].raw_affiliation_string | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[2].institutions[0].id | https://openalex.org/I180857899 |
| authorships[2].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Pfizer (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lisa Manzuk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[3].author.id | https://openalex.org/A5102785881 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-0187-5100 |
| authorships[3].author.display_name | Stephanie T. Chang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[3].affiliations[0].raw_affiliation_string | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[3].institutions[0].id | https://openalex.org/I180857899 |
| authorships[3].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Pfizer (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephanie Chang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[4].author.id | https://openalex.org/A5093545938 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Aiyana Cubias |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[4].affiliations[0].raw_affiliation_string | Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States |
| authorships[4].institutions[0].id | https://openalex.org/I180857899 |
| authorships[4].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Pfizer (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Aiyana Cubias |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States |
| authorships[5].author.id | https://openalex.org/A5006400443 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Sonja N. Brun |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[5].affiliations[0].raw_affiliation_string | Oncology Research and Development, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[5].institutions[0].id | https://openalex.org/I180857899 |
| authorships[5].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Pfizer (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sonja Brun |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Oncology Research and Development, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[6].author.id | https://openalex.org/A5011934704 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1546-2481 |
| authorships[6].author.display_name | Anand Giddabasappa |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[6].affiliations[0].raw_affiliation_string | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[6].institutions[0].id | https://openalex.org/I180857899 |
| authorships[6].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Pfizer (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Anand Giddabasappa |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[7].author.id | https://openalex.org/A5083611896 |
| authorships[7].author.orcid | https://orcid.org/0009-0007-4158-4689 |
| authorships[7].author.display_name | Ziyue Karen Jiang |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I180857899 |
| authorships[7].affiliations[0].raw_affiliation_string | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| authorships[7].institutions[0].id | https://openalex.org/I180857899 |
| authorships[7].institutions[0].ror | https://ror.org/01xdqrp08 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I180857899 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Pfizer (United States) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ziyue Karen Jiang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.tranon.2023.101833 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Applying deep learning to segmentation of murine lung tumors in pre-clinical micro-computed tomography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2064573700, https://openalex.org/W2731899572, https://openalex.org/W4230611425, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W4383066092, https://openalex.org/W2376385980, https://openalex.org/W3215138031 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.tranon.2023.101833 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106638657 |
| best_oa_location.source.issn | 1936-5233, 1944-7124 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1936-5233 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Translational Oncology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Translational Oncology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.tranon.2023.101833 |
| primary_location.id | doi:10.1016/j.tranon.2023.101833 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106638657 |
| primary_location.source.issn | 1936-5233, 1944-7124 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1936-5233 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Translational Oncology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Translational Oncology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.tranon.2023.101833 |
| publication_date | 2023-12-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2905825066, https://openalex.org/W3017187232, https://openalex.org/W3010845033, https://openalex.org/W2094207365, https://openalex.org/W1994772304, https://openalex.org/W2091070104, https://openalex.org/W2006406032, https://openalex.org/W2785651841, https://openalex.org/W3171547923, https://openalex.org/W203082309, https://openalex.org/W2101926813, https://openalex.org/W6684191040, https://openalex.org/W1901129140, https://openalex.org/W2464708700, https://openalex.org/W2110723426, https://openalex.org/W2946810136, https://openalex.org/W6782197798, https://openalex.org/W3160602834, https://openalex.org/W3102722375, https://openalex.org/W6793368367, https://openalex.org/W3132163368, https://openalex.org/W3114083731, https://openalex.org/W3137072410, https://openalex.org/W4226011769, https://openalex.org/W3210048233, https://openalex.org/W4310726512, https://openalex.org/W3200897081, https://openalex.org/W2983490042, https://openalex.org/W2960751431, https://openalex.org/W6780009827, https://openalex.org/W4318348092, https://openalex.org/W4309566365, https://openalex.org/W2032019019, https://openalex.org/W1953264505, https://openalex.org/W1611210979, https://openalex.org/W4220717021, https://openalex.org/W2027146979, https://openalex.org/W4294308706, https://openalex.org/W2000419837, https://openalex.org/W2137875182, https://openalex.org/W3152958266, https://openalex.org/W4225843195, https://openalex.org/W3081016776, https://openalex.org/W2163605009, https://openalex.org/W3039320642 |
| referenced_works_count | 45 |
| abstract_inverted_index.1 | 183 |
| abstract_inverted_index.= | 137, 194 |
| abstract_inverted_index.a | 3, 34, 82, 119, 148, 189, 230 |
| abstract_inverted_index.(n | 136, 193 |
| abstract_inverted_index.12 | 138 |
| abstract_inverted_index.2D | 143 |
| abstract_inverted_index.3D | 107, 139 |
| abstract_inverted_index.5+ | 177 |
| abstract_inverted_index.55 | 195 |
| abstract_inverted_index.In | 147, 225 |
| abstract_inverted_index.an | 133 |
| abstract_inverted_index.be | 73 |
| abstract_inverted_index.by | 154 |
| abstract_inverted_index.in | 15, 49, 59, 182, 208 |
| abstract_inverted_index.of | 6, 25, 54, 92, 98, 179, 243, 246 |
| abstract_inverted_index.on | 58, 105, 125, 132 |
| abstract_inverted_index.or | 67, 141 |
| abstract_inverted_index.to | 22, 87, 122, 169, 188 |
| abstract_inverted_index.we | 80, 227 |
| abstract_inverted_index.100 | 106 |
| abstract_inverted_index.all | 174 |
| abstract_inverted_index.and | 69, 103, 131, 167, 205, 239 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.can | 72, 235 |
| abstract_inverted_index.new | 17 |
| abstract_inverted_index.the | 23, 50, 96, 116, 126, 157, 197, 206 |
| abstract_inverted_index.use | 24 |
| abstract_inverted_index.2328 | 142 |
| abstract_inverted_index.GEMM | 31 |
| abstract_inverted_index.Here | 79 |
| abstract_inverted_index.Lung | 0 |
| abstract_inverted_index.data | 128 |
| abstract_inverted_index.deep | 83, 231 |
| abstract_inverted_index.have | 11, 228 |
| abstract_inverted_index.high | 76, 120 |
| abstract_inverted_index.lung | 93, 248 |
| abstract_inverted_index.made | 12 |
| abstract_inverted_index.more | 221 |
| abstract_inverted_index.over | 203 |
| abstract_inverted_index.soft | 100 |
| abstract_inverted_index.than | 42 |
| abstract_inverted_index.that | 37, 112 |
| abstract_inverted_index.time | 204 |
| abstract_inverted_index.vivo | 60 |
| abstract_inverted_index.well | 219 |
| abstract_inverted_index.were | 113 |
| abstract_inverted_index.when | 186 |
| abstract_inverted_index.with | 75, 214, 220 |
| abstract_inverted_index.µCT | 108, 244 |
| abstract_inverted_index.cause | 5 |
| abstract_inverted_index.close | 168 |
| abstract_inverted_index.fast, | 237 |
| abstract_inverted_index.fully | 89, 240 |
| abstract_inverted_index.great | 13 |
| abstract_inverted_index.hours | 178 |
| abstract_inverted_index.human | 39 |
| abstract_inverted_index.image | 70 |
| abstract_inverted_index.model | 36, 85, 117, 158, 198, 233 |
| abstract_inverted_index.mouse | 28 |
| abstract_inverted_index.other | 99 |
| abstract_inverted_index.owing | 21 |
| abstract_inverted_index.scans | 140, 245 |
| abstract_inverted_index.study | 192 |
| abstract_inverted_index.these | 55 |
| abstract_inverted_index.tumor | 201, 209 |
| abstract_inverted_index.virus | 216 |
| abstract_inverted_index.which | 234 |
| abstract_inverted_index.while | 175 |
| abstract_inverted_index.better | 41 |
| abstract_inverted_index.burden | 210 |
| abstract_inverted_index.cancer | 1 |
| abstract_inverted_index.death, | 8 |
| abstract_inverted_index.groups | 212 |
| abstract_inverted_index.images | 109 |
| abstract_inverted_index.lungs. | 51 |
| abstract_inverted_index.manual | 123, 151, 180 |
| abstract_inverted_index.mice), | 196 |
| abstract_inverted_index.models | 29, 44 |
| abstract_inverted_index.murine | 247 |
| abstract_inverted_index.partly | 20 |
| abstract_inverted_index.relies | 57 |
| abstract_inverted_index.tested | 104 |
| abstract_inverted_index.tools, | 62 |
| abstract_inverted_index.tumors | 32, 46, 56, 94 |
| abstract_inverted_index.within | 162 |
| abstract_inverted_index.µCT), | 68 |
| abstract_inverted_index.(18,662 | 110 |
| abstract_inverted_index.Trained | 102 |
| abstract_inverted_index.against | 150 |
| abstract_inverted_index.applied | 187 |
| abstract_inverted_index.because | 45 |
| abstract_inverted_index.between | 211 |
| abstract_inverted_index.dataset | 135 |
| abstract_inverted_index.develop | 47 |
| abstract_inverted_index.disease | 40 |
| abstract_inverted_index.imaging | 61 |
| abstract_inverted_index.induced | 213 |
| abstract_inverted_index.leading | 4 |
| abstract_inverted_index.minute. | 184 |
| abstract_inverted_index.perform | 88, 236 |
| abstract_inverted_index.present | 81 |
| abstract_inverted_index.remains | 2 |
| abstract_inverted_index.slices) | 111 |
| abstract_inverted_index.slices, | 144 |
| abstract_inverted_index.strides | 14 |
| abstract_inverted_index.testing | 127 |
| abstract_inverted_index.titers, | 217 |
| abstract_inverted_index.trained | 86 |
| abstract_inverted_index.tumors. | 249 |
| abstract_inverted_index.without | 95 |
| abstract_inverted_index.(GEMMs). | 30 |
| abstract_inverted_index.Finally, | 185 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.aligning | 218 |
| abstract_inverted_index.analysis | 71, 223 |
| abstract_inverted_index.detected | 200 |
| abstract_inverted_index.learning | 84, 232 |
| abstract_inverted_index.manually | 114 |
| abstract_inverted_index.methods. | 224 |
| abstract_inverted_index.multiple | 155 |
| abstract_inverted_index.tissues. | 101 |
| abstract_inverted_index.(micro-CT | 66 |
| abstract_inverted_index.DSC=0.69) | 166 |
| abstract_inverted_index.DSC=0.78) | 130, 160 |
| abstract_inverted_index.accurate, | 238 |
| abstract_inverted_index.analysts, | 156 |
| abstract_inverted_index.automated | 90, 241 |
| abstract_inverted_index.detection | 53 |
| abstract_inverted_index.developed | 229 |
| abstract_inverted_index.different | 215 |
| abstract_inverted_index.implanted | 43 |
| abstract_inverted_index.laborious | 74 |
| abstract_inverted_index.performed | 153, 161 |
| abstract_inverted_index.recently, | 19 |
| abstract_inverted_index.represent | 33 |
| abstract_inverted_index.DSC=0.73). | 146 |
| abstract_inverted_index.DSC=0.82), | 173 |
| abstract_inverted_index.Tomography | 65 |
| abstract_inverted_index.comparison | 149 |
| abstract_inverted_index.completing | 176 |
| abstract_inverted_index.developing | 16 |
| abstract_inverted_index.engineered | 27 |
| abstract_inverted_index.inter-user | 77 |
| abstract_inverted_index.real-world | 190 |
| abstract_inverted_index.scientists | 10 |
| abstract_inverted_index.segmented, | 115 |
| abstract_inverted_index.treatments | 18 |
| abstract_inverted_index.conclusion, | 226 |
| abstract_inverted_index.correlation | 121 |
| abstract_inverted_index.differences | 207 |
| abstract_inverted_index.genetically | 26 |
| abstract_inverted_index.independent | 134 |
| abstract_inverted_index.progression | 202 |
| abstract_inverted_index.traditional | 222 |
| abstract_inverted_index.variability | 164, 171 |
| abstract_inverted_index.demonstrated | 118 |
| abstract_inverted_index.inter-reader | 163 |
| abstract_inverted_index.interference | 97 |
| abstract_inverted_index.intra-reader | 170 |
| abstract_inverted_index.longitudinal | 191 |
| abstract_inverted_index.segmentation | 91, 152, 242 |
| abstract_inverted_index.specifically | 63 |
| abstract_inverted_index.successfully | 199 |
| abstract_inverted_index.variability. | 78 |
| abstract_inverted_index.recapitulates | 38 |
| abstract_inverted_index.segmentations | 124, 181 |
| abstract_inverted_index.spontaneously | 48 |
| abstract_inverted_index.translational | 35 |
| abstract_inverted_index.cancer-related | 7 |
| abstract_inverted_index.micro-Computed | 64 |
| abstract_inverted_index.r<sup>2</sup>=0.97, | 145 |
| abstract_inverted_index.(r<sup>2</sup>=0.79, | 165 |
| abstract_inverted_index.(r<sup>2</sup>=0.98, | 159 |
| abstract_inverted_index.(r<sup>2</sup>=0.99, | 129, 172 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5083611896 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I180857899 |
| citation_normalized_percentile.value | 0.8216846 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |