Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/engproc2025102012
Transit systems play a vital role in urban mobility, yet predicting individual travel behavior within these systems remains a complex challenge. Traditional machine learning approaches struggle with transit trip data because each trip may consist of a variable number of transit legs, leading to missing data and inconsistencies when using fixed-length tabular representations. To address this issue, we propose a transformer-based dynamic-sequence approach that models transit trips as variable-length sequences, allowing for flexible representation while leveraging the power of attention mechanisms. Our methodology constructs trip sequences by encoding each transit leg as a token, incorporating travel time, mode of transport, and a 2D positional encoding based on grid-based spatial coordinates. By dynamically skipping missing legs instead of imputing artificial values, our approach maintains data integrity and prevents bias. The transformer model then processes these sequences using self-attention, effectively capturing relationships across different trip segments and spatial patterns. To evaluate the effectiveness of our approach, we train the model on a dataset of urban transit trips and predict first-mile and last-mile travel times. We assess performance using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Experimental results demonstrate that our dynamic-sequence method yields up to a 30.96% improvement in accuracy compared to non-dynamic methods while preserving the underlying structure of transit trips. This study contributes to intelligent transportation systems by presenting a robust, adaptable framework for modeling real-world transit data. Our findings highlight the advantages of self-attention-based architectures for handling irregular trip structures, offering a novel perspective on a data-driven understanding of individual travel behavior.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/engproc2025102012
- https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706
- OA Status
- gold
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413039483
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413039483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/engproc2025102012Digital Object Identifier
- Title
-
Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-07Full publication date if available
- Authors
-
Byoung-Sik Choo, Dong‐Kyu KimList of authors in order
- Landing page
-
https://doi.org/10.3390/engproc2025102012Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706Direct OA link when available
- Concepts
-
Computer science, Transformer, Sequence (biology), Engineering, Voltage, Electrical engineering, Genetics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413039483 |
|---|---|
| doi | https://doi.org/10.3390/engproc2025102012 |
| ids.doi | https://doi.org/10.3390/engproc2025102012 |
| ids.openalex | https://openalex.org/W4413039483 |
| fwci | 0.0 |
| type | article |
| title | Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 12 |
| biblio.first_page | 12 |
| topics[0].id | https://openalex.org/T11980 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Human Mobility and Location-Based Analysis |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6555024981498718 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5556890964508057 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C2778112365 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48715445399284363 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[2].display_name | Sequence (biology) |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.17482110857963562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| concepts[4].id | https://openalex.org/C165801399 |
| concepts[4].level | 2 |
| concepts[4].score | 0.1621999442577362 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[4].display_name | Voltage |
| concepts[5].id | https://openalex.org/C119599485 |
| concepts[5].level | 1 |
| concepts[5].score | 0.14389291405677795 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[5].display_name | Electrical engineering |
| concepts[6].id | https://openalex.org/C54355233 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[6].display_name | Genetics |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6555024981498718 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5556890964508057 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/sequence |
| keywords[2].score | 0.48715445399284363 |
| keywords[2].display_name | Sequence (biology) |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.17482110857963562 |
| keywords[3].display_name | Engineering |
| keywords[4].id | https://openalex.org/keywords/voltage |
| keywords[4].score | 0.1621999442577362 |
| keywords[4].display_name | Voltage |
| keywords[5].id | https://openalex.org/keywords/electrical-engineering |
| keywords[5].score | 0.14389291405677795 |
| keywords[5].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.3390/engproc2025102012 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ITS APF |
| locations[0].landing_page_url | https://doi.org/10.3390/engproc2025102012 |
| locations[1].id | pmh:oai:doaj.org/article:32419e26d7d44df78cf4b7afaa6a58c6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Engineering Proceedings, Vol 102, Iss 1, p 12 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/32419e26d7d44df78cf4b7afaa6a58c6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5070598143 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Byoung-Sik Choo |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I139264467 |
| authorships[0].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Seoul National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bumjun Choo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil & Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5100377978 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0746-3043 |
| authorships[1].author.display_name | Dong‐Kyu Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I139264467 |
| authorships[1].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Seoul National University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dong-Kyu Kim |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Civil & Environmental Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11980 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Human Mobility and Location-Based Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/engproc2025102012 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ITS APF |
| best_oa_location.landing_page_url | https://doi.org/10.3390/engproc2025102012 |
| primary_location.id | doi:10.3390/engproc2025102012 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-4591/102/1/12/pdf?version=1754563706 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ITS APF |
| primary_location.landing_page_url | https://doi.org/10.3390/engproc2025102012 |
| publication_date | 2025-08-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2233426463, https://openalex.org/W4244532478, https://openalex.org/W2889617671, https://openalex.org/W4309651445, https://openalex.org/W6771535102, https://openalex.org/W4394939034, https://openalex.org/W2041371899, https://openalex.org/W2994016564 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 3, 18, 36, 59, 92, 101, 159, 196, 222, 245, 249 |
| abstract_inverted_index.2D | 102 |
| abstract_inverted_index.By | 110 |
| abstract_inverted_index.To | 53, 147 |
| abstract_inverted_index.We | 172 |
| abstract_inverted_index.as | 67, 91 |
| abstract_inverted_index.by | 86, 220 |
| abstract_inverted_index.in | 6, 199 |
| abstract_inverted_index.of | 35, 39, 78, 98, 116, 151, 161, 210, 236, 252 |
| abstract_inverted_index.on | 106, 158, 248 |
| abstract_inverted_index.to | 43, 195, 202, 216 |
| abstract_inverted_index.up | 194 |
| abstract_inverted_index.we | 57, 154 |
| abstract_inverted_index.Our | 81, 231 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.and | 46, 100, 125, 144, 165, 168, 180 |
| abstract_inverted_index.for | 71, 226, 239 |
| abstract_inverted_index.leg | 90 |
| abstract_inverted_index.may | 33 |
| abstract_inverted_index.our | 120, 152, 190 |
| abstract_inverted_index.the | 76, 149, 156, 207, 234 |
| abstract_inverted_index.yet | 9 |
| abstract_inverted_index.Mean | 176, 182 |
| abstract_inverted_index.Root | 181 |
| abstract_inverted_index.This | 213 |
| abstract_inverted_index.data | 29, 45, 123 |
| abstract_inverted_index.each | 31, 88 |
| abstract_inverted_index.legs | 114 |
| abstract_inverted_index.mode | 97 |
| abstract_inverted_index.play | 2 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 63, 189 |
| abstract_inverted_index.then | 131 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.trip | 28, 32, 84, 142, 242 |
| abstract_inverted_index.when | 48 |
| abstract_inverted_index.with | 26 |
| abstract_inverted_index.(MAE) | 179 |
| abstract_inverted_index.Error | 178, 184 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.bias. | 127 |
| abstract_inverted_index.data. | 230 |
| abstract_inverted_index.legs, | 41 |
| abstract_inverted_index.model | 130, 157 |
| abstract_inverted_index.novel | 246 |
| abstract_inverted_index.power | 77 |
| abstract_inverted_index.study | 214 |
| abstract_inverted_index.these | 15, 133 |
| abstract_inverted_index.time, | 96 |
| abstract_inverted_index.train | 155 |
| abstract_inverted_index.trips | 66, 164 |
| abstract_inverted_index.urban | 7, 162 |
| abstract_inverted_index.using | 49, 135, 175 |
| abstract_inverted_index.vital | 4 |
| abstract_inverted_index.while | 74, 205 |
| abstract_inverted_index.30.96% | 197 |
| abstract_inverted_index.across | 140 |
| abstract_inverted_index.assess | 173 |
| abstract_inverted_index.issue, | 56 |
| abstract_inverted_index.method | 192 |
| abstract_inverted_index.models | 64 |
| abstract_inverted_index.number | 38 |
| abstract_inverted_index.times. | 171 |
| abstract_inverted_index.token, | 93 |
| abstract_inverted_index.travel | 12, 95, 170, 254 |
| abstract_inverted_index.trips. | 212 |
| abstract_inverted_index.within | 14 |
| abstract_inverted_index.yields | 193 |
| abstract_inverted_index.(RMSE). | 185 |
| abstract_inverted_index.Squared | 183 |
| abstract_inverted_index.Transit | 0 |
| abstract_inverted_index.address | 54 |
| abstract_inverted_index.because | 30 |
| abstract_inverted_index.complex | 19 |
| abstract_inverted_index.consist | 34 |
| abstract_inverted_index.dataset | 160 |
| abstract_inverted_index.instead | 115 |
| abstract_inverted_index.leading | 42 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.methods | 204 |
| abstract_inverted_index.missing | 44, 113 |
| abstract_inverted_index.predict | 166 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.remains | 17 |
| abstract_inverted_index.results | 187 |
| abstract_inverted_index.robust, | 223 |
| abstract_inverted_index.spatial | 108, 145 |
| abstract_inverted_index.systems | 1, 16, 219 |
| abstract_inverted_index.tabular | 51 |
| abstract_inverted_index.transit | 27, 40, 65, 89, 163, 211, 229 |
| abstract_inverted_index.values, | 119 |
| abstract_inverted_index.Absolute | 177 |
| abstract_inverted_index.accuracy | 200 |
| abstract_inverted_index.allowing | 70 |
| abstract_inverted_index.approach | 62, 121 |
| abstract_inverted_index.behavior | 13 |
| abstract_inverted_index.compared | 201 |
| abstract_inverted_index.encoding | 87, 104 |
| abstract_inverted_index.evaluate | 148 |
| abstract_inverted_index.findings | 232 |
| abstract_inverted_index.flexible | 72 |
| abstract_inverted_index.handling | 240 |
| abstract_inverted_index.imputing | 117 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.modeling | 227 |
| abstract_inverted_index.offering | 244 |
| abstract_inverted_index.prevents | 126 |
| abstract_inverted_index.segments | 143 |
| abstract_inverted_index.skipping | 112 |
| abstract_inverted_index.struggle | 25 |
| abstract_inverted_index.variable | 37 |
| abstract_inverted_index.adaptable | 224 |
| abstract_inverted_index.approach, | 153 |
| abstract_inverted_index.attention | 79 |
| abstract_inverted_index.behavior. | 255 |
| abstract_inverted_index.capturing | 138 |
| abstract_inverted_index.different | 141 |
| abstract_inverted_index.framework | 225 |
| abstract_inverted_index.highlight | 233 |
| abstract_inverted_index.integrity | 124 |
| abstract_inverted_index.irregular | 241 |
| abstract_inverted_index.last-mile | 169 |
| abstract_inverted_index.maintains | 122 |
| abstract_inverted_index.mobility, | 8 |
| abstract_inverted_index.patterns. | 146 |
| abstract_inverted_index.processes | 132 |
| abstract_inverted_index.sequences | 85, 134 |
| abstract_inverted_index.structure | 209 |
| abstract_inverted_index.advantages | 235 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.artificial | 118 |
| abstract_inverted_index.challenge. | 20 |
| abstract_inverted_index.constructs | 83 |
| abstract_inverted_index.first-mile | 167 |
| abstract_inverted_index.grid-based | 107 |
| abstract_inverted_index.individual | 11, 253 |
| abstract_inverted_index.leveraging | 75 |
| abstract_inverted_index.positional | 103 |
| abstract_inverted_index.predicting | 10 |
| abstract_inverted_index.presenting | 221 |
| abstract_inverted_index.preserving | 206 |
| abstract_inverted_index.real-world | 228 |
| abstract_inverted_index.sequences, | 69 |
| abstract_inverted_index.transport, | 99 |
| abstract_inverted_index.underlying | 208 |
| abstract_inverted_index.Traditional | 21 |
| abstract_inverted_index.contributes | 215 |
| abstract_inverted_index.data-driven | 250 |
| abstract_inverted_index.demonstrate | 188 |
| abstract_inverted_index.dynamically | 111 |
| abstract_inverted_index.effectively | 137 |
| abstract_inverted_index.improvement | 198 |
| abstract_inverted_index.intelligent | 217 |
| abstract_inverted_index.mechanisms. | 80 |
| abstract_inverted_index.methodology | 82 |
| abstract_inverted_index.non-dynamic | 203 |
| abstract_inverted_index.performance | 174 |
| abstract_inverted_index.perspective | 247 |
| abstract_inverted_index.structures, | 243 |
| abstract_inverted_index.transformer | 129 |
| abstract_inverted_index.Experimental | 186 |
| abstract_inverted_index.coordinates. | 109 |
| abstract_inverted_index.fixed-length | 50 |
| abstract_inverted_index.architectures | 238 |
| abstract_inverted_index.effectiveness | 150 |
| abstract_inverted_index.incorporating | 94 |
| abstract_inverted_index.relationships | 139 |
| abstract_inverted_index.understanding | 251 |
| abstract_inverted_index.representation | 73 |
| abstract_inverted_index.transportation | 218 |
| abstract_inverted_index.inconsistencies | 47 |
| abstract_inverted_index.self-attention, | 136 |
| abstract_inverted_index.variable-length | 68 |
| abstract_inverted_index.dynamic-sequence | 61, 191 |
| abstract_inverted_index.representations. | 52 |
| abstract_inverted_index.transformer-based | 60 |
| abstract_inverted_index.self-attention-based | 237 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100377978 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I139264467 |
| citation_normalized_percentile.value | 0.30688457 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |