Approaches to Dealing With Missing Data in Railway Asset Management Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.2978902
The collection of reliable and high-quality data is seen as a prerequisite for effective and efficient rail infrastructure and rolling stock asset management to meet the requirements of asset owners and service providers. In this paper, the importance of recovering missing information in railway asset management is highlighted, and the advanced models and algorithms that have been applied to recovering the missed data are analyzed and discussed. Through making comparisons among these models and algorithms, a procedure is proposed to guide selecting the appropriate models based on different data missing scenarios. Using the newly developed framework with one dataset from each scenario, new models with different structures are trained and finally, the most suitable model is selected and utilized to recover the missing data and the selected model's performance is evaluated using the data with known or clearly identified missing data mechanisms. Challenges via application of advanced algorithms for recovering missing data are discussed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.2978902
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdf
- OA Status
- gold
- Cited By
- 17
- References
- 126
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3009955828
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3009955828Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.2978902Digital Object Identifier
- Title
-
Approaches to Dealing With Missing Data in Railway Asset ManagementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Paul E. McMahon, Tieling Zhang, Richard DwightList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.2978902Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdfDirect OA link when available
- Concepts
-
Missing data, Computer science, Asset management, Data mining, Data quality, Asset (computer security), Data collection, Data modeling, Data science, Service (business), Machine learning, Database, Computer security, Finance, Business, Marketing, Statistics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 1, 2022: 6, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
126Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3009955828 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.2978902 |
| ids.doi | https://doi.org/10.1109/access.2020.2978902 |
| ids.mag | 3009955828 |
| ids.openalex | https://openalex.org/W3009955828 |
| fwci | 1.91713785 |
| type | article |
| title | Approaches to Dealing With Missing Data in Railway Asset Management |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 48194 |
| biblio.first_page | 48177 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9944000244140625 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11344 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.978600025177002 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Traffic Prediction and Management Techniques |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9757000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8320140838623047 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.769258975982666 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776517139 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6222438812255859 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q873442 |
| concepts[2].display_name | Asset management |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5654773116111755 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C24756922 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4908605217933655 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[4].display_name | Data quality |
| concepts[5].id | https://openalex.org/C76178495 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48665910959243774 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4808784 |
| concepts[5].display_name | Asset (computer security) |
| concepts[6].id | https://openalex.org/C133462117 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4850151240825653 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[6].display_name | Data collection |
| concepts[7].id | https://openalex.org/C67186912 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4589385390281677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[7].display_name | Data modeling |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32021254301071167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C2780378061 |
| concepts[9].level | 2 |
| concepts[9].score | 0.25368547439575195 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[9].display_name | Service (business) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.18813499808311462 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1742834448814392 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12777948379516602 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C10138342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09298372268676758 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[13].display_name | Finance |
| concepts[14].id | https://openalex.org/C144133560 |
| concepts[14].level | 0 |
| concepts[14].score | 0.081149160861969 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[14].display_name | Business |
| concepts[15].id | https://openalex.org/C162853370 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[15].display_name | Marketing |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.8320140838623047 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.769258975982666 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/asset-management |
| keywords[2].score | 0.6222438812255859 |
| keywords[2].display_name | Asset management |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5654773116111755 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/data-quality |
| keywords[4].score | 0.4908605217933655 |
| keywords[4].display_name | Data quality |
| keywords[5].id | https://openalex.org/keywords/asset |
| keywords[5].score | 0.48665910959243774 |
| keywords[5].display_name | Asset (computer security) |
| keywords[6].id | https://openalex.org/keywords/data-collection |
| keywords[6].score | 0.4850151240825653 |
| keywords[6].display_name | Data collection |
| keywords[7].id | https://openalex.org/keywords/data-modeling |
| keywords[7].score | 0.4589385390281677 |
| keywords[7].display_name | Data modeling |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.32021254301071167 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/service |
| keywords[9].score | 0.25368547439575195 |
| keywords[9].display_name | Service (business) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.18813499808311462 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/database |
| keywords[11].score | 0.1742834448814392 |
| keywords[11].display_name | Database |
| keywords[12].id | https://openalex.org/keywords/computer-security |
| keywords[12].score | 0.12777948379516602 |
| keywords[12].display_name | Computer security |
| keywords[13].id | https://openalex.org/keywords/finance |
| keywords[13].score | 0.09298372268676758 |
| keywords[13].display_name | Finance |
| keywords[14].id | https://openalex.org/keywords/business |
| keywords[14].score | 0.081149160861969 |
| keywords[14].display_name | Business |
| language | en |
| locations[0].id | doi:10.1109/access.2020.2978902 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.2978902 |
| locations[1].id | pmh:oai:doaj.org/article:53e479ded4134538a2b4002b2f7593fc |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 8, Pp 48177-48194 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/53e479ded4134538a2b4002b2f7593fc |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010541897 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6796-300X |
| authorships[0].author.display_name | Paul E. McMahon |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I204824540 |
| authorships[0].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Wollongong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paul McMahon |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| authorships[1].author.id | https://openalex.org/A5027749163 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8506-9290 |
| authorships[1].author.display_name | Tieling Zhang |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I204824540 |
| authorships[1].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of Wollongong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tieling Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| authorships[2].author.id | https://openalex.org/A5088265608 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9385-8609 |
| authorships[2].author.display_name | Richard Dwight |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I204824540 |
| authorships[2].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Wollongong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Richard A. Dwight |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Approaches to Dealing With Missing Data in Railway Asset Management |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9944000244140625 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W1494844823, https://openalex.org/W4392915121, https://openalex.org/W3009911173, https://openalex.org/W1990141680, https://openalex.org/W2811483426, https://openalex.org/W2384042486, https://openalex.org/W4280648890, https://openalex.org/W2898593553, https://openalex.org/W2899535352, https://openalex.org/W1608881614 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2020.2978902 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.2978902 |
| primary_location.id | doi:10.1109/access.2020.2978902 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09026926.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.2978902 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2941714453, https://openalex.org/W2491361852, https://openalex.org/W2749818146, https://openalex.org/W2791884409, https://openalex.org/W2076395872, https://openalex.org/W138822395, https://openalex.org/W2315173410, https://openalex.org/W2908849044, https://openalex.org/W2049633694, https://openalex.org/W2132434674, https://openalex.org/W2146332392, https://openalex.org/W2059180350, https://openalex.org/W2625982477, https://openalex.org/W2276658957, https://openalex.org/W2090074590, https://openalex.org/W2047837247, https://openalex.org/W6751420435, https://openalex.org/W2920926216, https://openalex.org/W2481399973, https://openalex.org/W1977098485, https://openalex.org/W6602982252, https://openalex.org/W2766886300, https://openalex.org/W2066067595, https://openalex.org/W2050762021, https://openalex.org/W2116781287, https://openalex.org/W2070100823, https://openalex.org/W2170674956, https://openalex.org/W2167193589, https://openalex.org/W2016637377, https://openalex.org/W2810591130, https://openalex.org/W2996338922, https://openalex.org/W2109980155, https://openalex.org/W2804746971, https://openalex.org/W2941166284, https://openalex.org/W2744556021, https://openalex.org/W2487200295, https://openalex.org/W2090768248, https://openalex.org/W6729476641, https://openalex.org/W2057677197, https://openalex.org/W2102720558, https://openalex.org/W2113882724, https://openalex.org/W6628041578, https://openalex.org/W2123170466, https://openalex.org/W2242774505, https://openalex.org/W2046006386, https://openalex.org/W2497811011, https://openalex.org/W2022974352, https://openalex.org/W2526506456, https://openalex.org/W2242684785, https://openalex.org/W1996390469, https://openalex.org/W6601074498, https://openalex.org/W4245588985, https://openalex.org/W2406349003, https://openalex.org/W6740338471, https://openalex.org/W2588545232, https://openalex.org/W2903027428, https://openalex.org/W2982298444, https://openalex.org/W6605166215, https://openalex.org/W2048779798, https://openalex.org/W2768793959, https://openalex.org/W6629956336, https://openalex.org/W2797405679, https://openalex.org/W4242982642, https://openalex.org/W2064675550, https://openalex.org/W2068331431, https://openalex.org/W6634507498, https://openalex.org/W2124070468, https://openalex.org/W2594265094, https://openalex.org/W6749075489, https://openalex.org/W2776855315, https://openalex.org/W6631943919, https://openalex.org/W2132083787, https://openalex.org/W2910647020, https://openalex.org/W4239015571, https://openalex.org/W2780907465, https://openalex.org/W2121498323, https://openalex.org/W6722599427, https://openalex.org/W2085766370, https://openalex.org/W2750126764, https://openalex.org/W2100358124, https://openalex.org/W2156267802, https://openalex.org/W6602733508, https://openalex.org/W1594420653, https://openalex.org/W4244133811, https://openalex.org/W2089551539, https://openalex.org/W2973193222, https://openalex.org/W1964162160, https://openalex.org/W4237640996, https://openalex.org/W6621175669, https://openalex.org/W6637386731, https://openalex.org/W2137356002, https://openalex.org/W2152559190, https://openalex.org/W2155482699, https://openalex.org/W2964348070, https://openalex.org/W2131850886, https://openalex.org/W2032588430, https://openalex.org/W2485170847, https://openalex.org/W2185902968, https://openalex.org/W1554944419, https://openalex.org/W4293583598, https://openalex.org/W2171033594, https://openalex.org/W73205277, https://openalex.org/W2599756123, https://openalex.org/W1251444851, https://openalex.org/W4248932673, https://openalex.org/W2793273050, https://openalex.org/W2164663739, https://openalex.org/W127213328, https://openalex.org/W66118202, https://openalex.org/W2554157189, https://openalex.org/W2963759070, https://openalex.org/W2199876621, https://openalex.org/W1973907010, https://openalex.org/W2803187616, https://openalex.org/W1576712038, https://openalex.org/W4285719527, https://openalex.org/W1502916507, https://openalex.org/W1493193319, https://openalex.org/W1680392829, https://openalex.org/W3099494060, https://openalex.org/W1533861849, https://openalex.org/W3125589452, https://openalex.org/W1544324307, https://openalex.org/W2189319335, https://openalex.org/W644501669, https://openalex.org/W2730937132 |
| referenced_works_count | 126 |
| abstract_inverted_index.a | 10, 75 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.in | 42 |
| abstract_inverted_index.is | 7, 46, 77, 115, 129 |
| abstract_inverted_index.of | 2, 27, 38, 145 |
| abstract_inverted_index.on | 86 |
| abstract_inverted_index.or | 136 |
| abstract_inverted_index.to | 23, 58, 79, 119 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 4, 14, 18, 30, 48, 52, 65, 73, 109, 117, 124 |
| abstract_inverted_index.are | 63, 107, 152 |
| abstract_inverted_index.for | 12, 148 |
| abstract_inverted_index.new | 102 |
| abstract_inverted_index.one | 97 |
| abstract_inverted_index.the | 25, 36, 49, 60, 82, 92, 111, 121, 125, 132 |
| abstract_inverted_index.via | 143 |
| abstract_inverted_index.been | 56 |
| abstract_inverted_index.data | 6, 62, 88, 123, 133, 140, 151 |
| abstract_inverted_index.each | 100 |
| abstract_inverted_index.from | 99 |
| abstract_inverted_index.have | 55 |
| abstract_inverted_index.meet | 24 |
| abstract_inverted_index.most | 112 |
| abstract_inverted_index.rail | 16 |
| abstract_inverted_index.seen | 8 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 96, 104, 134 |
| abstract_inverted_index.Using | 91 |
| abstract_inverted_index.among | 70 |
| abstract_inverted_index.asset | 21, 28, 44 |
| abstract_inverted_index.based | 85 |
| abstract_inverted_index.guide | 80 |
| abstract_inverted_index.known | 135 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.newly | 93 |
| abstract_inverted_index.stock | 20 |
| abstract_inverted_index.these | 71 |
| abstract_inverted_index.using | 131 |
| abstract_inverted_index.making | 68 |
| abstract_inverted_index.missed | 61 |
| abstract_inverted_index.models | 51, 72, 84, 103 |
| abstract_inverted_index.owners | 29 |
| abstract_inverted_index.paper, | 35 |
| abstract_inverted_index.Through | 67 |
| abstract_inverted_index.applied | 57 |
| abstract_inverted_index.clearly | 137 |
| abstract_inverted_index.dataset | 98 |
| abstract_inverted_index.missing | 40, 89, 122, 139, 150 |
| abstract_inverted_index.model's | 127 |
| abstract_inverted_index.railway | 43 |
| abstract_inverted_index.recover | 120 |
| abstract_inverted_index.rolling | 19 |
| abstract_inverted_index.service | 31 |
| abstract_inverted_index.trained | 108 |
| abstract_inverted_index.advanced | 50, 146 |
| abstract_inverted_index.analyzed | 64 |
| abstract_inverted_index.finally, | 110 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.reliable | 3 |
| abstract_inverted_index.selected | 116, 126 |
| abstract_inverted_index.suitable | 113 |
| abstract_inverted_index.utilized | 118 |
| abstract_inverted_index.developed | 94 |
| abstract_inverted_index.different | 87, 105 |
| abstract_inverted_index.effective | 13 |
| abstract_inverted_index.efficient | 15 |
| abstract_inverted_index.evaluated | 130 |
| abstract_inverted_index.framework | 95 |
| abstract_inverted_index.procedure | 76 |
| abstract_inverted_index.scenario, | 101 |
| abstract_inverted_index.selecting | 81 |
| abstract_inverted_index.Challenges | 142 |
| abstract_inverted_index.algorithms | 53, 147 |
| abstract_inverted_index.collection | 1 |
| abstract_inverted_index.discussed. | 66, 153 |
| abstract_inverted_index.identified | 138 |
| abstract_inverted_index.importance | 37 |
| abstract_inverted_index.management | 22, 45 |
| abstract_inverted_index.providers. | 32 |
| abstract_inverted_index.recovering | 39, 59, 149 |
| abstract_inverted_index.scenarios. | 90 |
| abstract_inverted_index.structures | 106 |
| abstract_inverted_index.algorithms, | 74 |
| abstract_inverted_index.application | 144 |
| abstract_inverted_index.appropriate | 83 |
| abstract_inverted_index.comparisons | 69 |
| abstract_inverted_index.information | 41 |
| abstract_inverted_index.mechanisms. | 141 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.high-quality | 5 |
| abstract_inverted_index.highlighted, | 47 |
| abstract_inverted_index.prerequisite | 11 |
| abstract_inverted_index.requirements | 26 |
| abstract_inverted_index.infrastructure | 17 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.83304475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |