Approximate Multiplier Induced Error Propagation in Deep Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
Deep Neural Networks (DNNs) rely heavily on dense arithmetic operations, motivating the use of Approximate Multipliers (AxMs) to reduce energy consumption in hardware accelerators. However, a rigorous mathematical characterization of how AxMs error distributions influence DNN accuracy remains underdeveloped. This work presents an analytical framework that connects the statistical error moments of an AxM to the induced distortion in General Matrix Multiplication (GEMM). Using the Frobenius norm of the resulting error matrix, we derive a closed form expression for practical DNN dimensions that demonstrates the distortion is predominantly governed by the multiplier mean error (bias). To evaluate this model in realistic settings, we incorporate controlled error injection into GEMM and convolution layers and examine its effect on ImageNet scale networks. The predicted distortion correlates strongly with the observed accuracy degradation, and an error configurable AxM case study implemented on an FPGA further confirms the analytical trends. By providing a lightweight alternative to behavioral or hardware level simulations, this framework enables rapid estimation of AxM impact on DNN inference quality.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2512.06537
- https://arxiv.org/pdf/2512.06537
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7113915478
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7113915478Canonical identifier for this work in OpenAlex
- Title
-
Approximate Multiplier Induced Error Propagation in Deep Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-06Full publication date if available
- Authors
-
Alahakoon, A. M. H. H., Saadat, Hassaan, Jayasinghe, Darshana, Parameswaran, SriList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.06537Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.06537Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.06537Direct OA link when available
- Concepts
-
Multiplier (economics), Artificial neural network, Computer science, Inference, Algorithm, Multiplication (music), Propagation of uncertainty, Distortion (music), Approximation error, Norm (philosophy), Error detection and correction, Convolution (computer science), Mean squared prediction error, Backpropagation, Deep neural networks, Mean squared error, Energy consumption, Matrix (chemical analysis), Matrix norm, Mathematics, Round-off error, Matrix representation, Artificial intelligence, Convolutional neural network, Approximation theory, Field-programmable gate array, Computation, Lagrange multiplier, Adder, Arithmetic, Energy (signal processing), Matrix multiplication, Scale (ratio), Error analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7113915478 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7113915478 |
| fwci | 0.0 |
| type | article |
| title | Approximate Multiplier Induced Error Propagation in Deep Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10363 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.35037559270858765 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Low-power high-performance VLSI design |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.28224116563796997 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10502 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.07688996940851212 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C124584101 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6226579546928406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1053266 |
| concepts[0].display_name | Multiplier (economics) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5726965665817261 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5577747225761414 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5503204464912415 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5429860949516296 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C2780595030 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4887859523296356 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3860309 |
| concepts[5].display_name | Multiplication (music) |
| concepts[6].id | https://openalex.org/C123614077 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46857425570487976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1364905 |
| concepts[6].display_name | Propagation of uncertainty |
| concepts[7].id | https://openalex.org/C126780896 |
| concepts[7].level | 4 |
| concepts[7].score | 0.43838784098625183 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[7].display_name | Distortion (music) |
| concepts[8].id | https://openalex.org/C122383733 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4235585629940033 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q865920 |
| concepts[8].display_name | Approximation error |
| concepts[9].id | https://openalex.org/C191795146 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41899654269218445 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[9].display_name | Norm (philosophy) |
| concepts[10].id | https://openalex.org/C103088060 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4185046851634979 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1062839 |
| concepts[10].display_name | Error detection and correction |
| concepts[11].id | https://openalex.org/C45347329 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4120912551879883 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[11].display_name | Convolution (computer science) |
| concepts[12].id | https://openalex.org/C167085575 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3725576102733612 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6803654 |
| concepts[12].display_name | Mean squared prediction error |
| concepts[13].id | https://openalex.org/C155032097 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3704994022846222 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[13].display_name | Backpropagation |
| concepts[14].id | https://openalex.org/C2984842247 |
| concepts[14].level | 3 |
| concepts[14].score | 0.35975947976112366 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[14].display_name | Deep neural networks |
| concepts[15].id | https://openalex.org/C139945424 |
| concepts[15].level | 2 |
| concepts[15].score | 0.32917898893356323 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[15].display_name | Mean squared error |
| concepts[16].id | https://openalex.org/C2780165032 |
| concepts[16].level | 2 |
| concepts[16].score | 0.32273462414741516 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[16].display_name | Energy consumption |
| concepts[17].id | https://openalex.org/C106487976 |
| concepts[17].level | 2 |
| concepts[17].score | 0.32096531987190247 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[17].display_name | Matrix (chemical analysis) |
| concepts[18].id | https://openalex.org/C92207270 |
| concepts[18].level | 3 |
| concepts[18].score | 0.3202536702156067 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q939253 |
| concepts[18].display_name | Matrix norm |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.3157448470592499 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C61005703 |
| concepts[20].level | 2 |
| concepts[20].score | 0.3118909001350403 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2145211 |
| concepts[20].display_name | Round-off error |
| concepts[21].id | https://openalex.org/C103275481 |
| concepts[21].level | 3 |
| concepts[21].score | 0.3108746111392975 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q6787889 |
| concepts[21].display_name | Matrix representation |
| concepts[22].id | https://openalex.org/C154945302 |
| concepts[22].level | 1 |
| concepts[22].score | 0.29058024287223816 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[22].display_name | Artificial intelligence |
| concepts[23].id | https://openalex.org/C81363708 |
| concepts[23].level | 2 |
| concepts[23].score | 0.288918137550354 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[23].display_name | Convolutional neural network |
| concepts[24].id | https://openalex.org/C145242015 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2821160554885864 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q774123 |
| concepts[24].display_name | Approximation theory |
| concepts[25].id | https://openalex.org/C42935608 |
| concepts[25].level | 2 |
| concepts[25].score | 0.27287957072257996 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[25].display_name | Field-programmable gate array |
| concepts[26].id | https://openalex.org/C45374587 |
| concepts[26].level | 2 |
| concepts[26].score | 0.27151888608932495 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[26].display_name | Computation |
| concepts[27].id | https://openalex.org/C73684929 |
| concepts[27].level | 2 |
| concepts[27].score | 0.27140817046165466 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q598870 |
| concepts[27].display_name | Lagrange multiplier |
| concepts[28].id | https://openalex.org/C164620267 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2652668058872223 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q376953 |
| concepts[28].display_name | Adder |
| concepts[29].id | https://openalex.org/C94375191 |
| concepts[29].level | 1 |
| concepts[29].score | 0.26502302289009094 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[29].display_name | Arithmetic |
| concepts[30].id | https://openalex.org/C186370098 |
| concepts[30].level | 2 |
| concepts[30].score | 0.2636369466781616 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[30].display_name | Energy (signal processing) |
| concepts[31].id | https://openalex.org/C17349429 |
| concepts[31].level | 3 |
| concepts[31].score | 0.26272711157798767 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q1049914 |
| concepts[31].display_name | Matrix multiplication |
| concepts[32].id | https://openalex.org/C2778755073 |
| concepts[32].level | 2 |
| concepts[32].score | 0.26045575737953186 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[32].display_name | Scale (ratio) |
| concepts[33].id | https://openalex.org/C3018824978 |
| concepts[33].level | 2 |
| concepts[33].score | 0.2602856755256653 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q2894891 |
| concepts[33].display_name | Error analysis |
| keywords[0].id | https://openalex.org/keywords/multiplier |
| keywords[0].score | 0.6226579546928406 |
| keywords[0].display_name | Multiplier (economics) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5726965665817261 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.5503204464912415 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/multiplication |
| keywords[3].score | 0.4887859523296356 |
| keywords[3].display_name | Multiplication (music) |
| keywords[4].id | https://openalex.org/keywords/propagation-of-uncertainty |
| keywords[4].score | 0.46857425570487976 |
| keywords[4].display_name | Propagation of uncertainty |
| keywords[5].id | https://openalex.org/keywords/distortion |
| keywords[5].score | 0.43838784098625183 |
| keywords[5].display_name | Distortion (music) |
| keywords[6].id | https://openalex.org/keywords/approximation-error |
| keywords[6].score | 0.4235585629940033 |
| keywords[6].display_name | Approximation error |
| keywords[7].id | https://openalex.org/keywords/norm |
| keywords[7].score | 0.41899654269218445 |
| keywords[7].display_name | Norm (philosophy) |
| keywords[8].id | https://openalex.org/keywords/error-detection-and-correction |
| keywords[8].score | 0.4185046851634979 |
| keywords[8].display_name | Error detection and correction |
| keywords[9].id | https://openalex.org/keywords/convolution |
| keywords[9].score | 0.4120912551879883 |
| keywords[9].display_name | Convolution (computer science) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.06537 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.06537 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.06537 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alahakoon, A. M. H. H. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alahakoon, A. M. H. H. |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Saadat, Hassaan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saadat, Hassaan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jayasinghe, Darshana |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jayasinghe, Darshana |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Parameswaran, Sri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Parameswaran, Sri |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.06537 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Approximate Multiplier Induced Error Propagation in Deep Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:24:52.286860 |
| primary_topic.id | https://openalex.org/T10363 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.35037559270858765 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Low-power high-performance VLSI design |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.06537 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.06537 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.06537 |
| primary_location.id | pmh:oai:arXiv.org:2512.06537 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.06537 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.06537 |
| publication_date | 2025-12-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 74, 148 |
| abstract_inverted_index.By | 146 |
| abstract_inverted_index.To | 95 |
| abstract_inverted_index.an | 42, 52, 131, 139 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.in | 21, 58, 99 |
| abstract_inverted_index.is | 86 |
| abstract_inverted_index.of | 13, 29, 51, 67, 162 |
| abstract_inverted_index.on | 6, 116, 138, 165 |
| abstract_inverted_index.or | 153 |
| abstract_inverted_index.to | 17, 54, 151 |
| abstract_inverted_index.we | 72, 102 |
| abstract_inverted_index.AxM | 53, 134, 163 |
| abstract_inverted_index.DNN | 35, 80, 166 |
| abstract_inverted_index.The | 120 |
| abstract_inverted_index.and | 109, 112, 130 |
| abstract_inverted_index.for | 78 |
| abstract_inverted_index.how | 30 |
| abstract_inverted_index.its | 114 |
| abstract_inverted_index.the | 11, 47, 55, 64, 68, 84, 90, 126, 143 |
| abstract_inverted_index.use | 12 |
| abstract_inverted_index.AxMs | 31 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.FPGA | 140 |
| abstract_inverted_index.GEMM | 108 |
| abstract_inverted_index.This | 39 |
| abstract_inverted_index.case | 135 |
| abstract_inverted_index.form | 76 |
| abstract_inverted_index.into | 107 |
| abstract_inverted_index.mean | 92 |
| abstract_inverted_index.norm | 66 |
| abstract_inverted_index.rely | 4 |
| abstract_inverted_index.that | 45, 82 |
| abstract_inverted_index.this | 97, 157 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.work | 40 |
| abstract_inverted_index.Using | 63 |
| abstract_inverted_index.dense | 7 |
| abstract_inverted_index.error | 32, 49, 70, 93, 105, 132 |
| abstract_inverted_index.level | 155 |
| abstract_inverted_index.model | 98 |
| abstract_inverted_index.rapid | 160 |
| abstract_inverted_index.scale | 118 |
| abstract_inverted_index.study | 136 |
| abstract_inverted_index.(AxMs) | 16 |
| abstract_inverted_index.(DNNs) | 3 |
| abstract_inverted_index.Matrix | 60 |
| abstract_inverted_index.Neural | 1 |
| abstract_inverted_index.closed | 75 |
| abstract_inverted_index.derive | 73 |
| abstract_inverted_index.effect | 115 |
| abstract_inverted_index.energy | 19 |
| abstract_inverted_index.impact | 164 |
| abstract_inverted_index.layers | 111 |
| abstract_inverted_index.reduce | 18 |
| abstract_inverted_index.(GEMM). | 62 |
| abstract_inverted_index.(bias). | 94 |
| abstract_inverted_index.General | 59 |
| abstract_inverted_index.enables | 159 |
| abstract_inverted_index.examine | 113 |
| abstract_inverted_index.further | 141 |
| abstract_inverted_index.heavily | 5 |
| abstract_inverted_index.induced | 56 |
| abstract_inverted_index.matrix, | 71 |
| abstract_inverted_index.moments | 50 |
| abstract_inverted_index.remains | 37 |
| abstract_inverted_index.trends. | 145 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.ImageNet | 117 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.accuracy | 36, 128 |
| abstract_inverted_index.confirms | 142 |
| abstract_inverted_index.connects | 46 |
| abstract_inverted_index.evaluate | 96 |
| abstract_inverted_index.governed | 88 |
| abstract_inverted_index.hardware | 22, 154 |
| abstract_inverted_index.observed | 127 |
| abstract_inverted_index.presents | 41 |
| abstract_inverted_index.quality. | 168 |
| abstract_inverted_index.rigorous | 26 |
| abstract_inverted_index.strongly | 124 |
| abstract_inverted_index.Frobenius | 65 |
| abstract_inverted_index.framework | 44, 158 |
| abstract_inverted_index.inference | 167 |
| abstract_inverted_index.influence | 34 |
| abstract_inverted_index.injection | 106 |
| abstract_inverted_index.networks. | 119 |
| abstract_inverted_index.practical | 79 |
| abstract_inverted_index.predicted | 121 |
| abstract_inverted_index.providing | 147 |
| abstract_inverted_index.realistic | 100 |
| abstract_inverted_index.resulting | 69 |
| abstract_inverted_index.settings, | 101 |
| abstract_inverted_index.analytical | 43, 144 |
| abstract_inverted_index.arithmetic | 8 |
| abstract_inverted_index.behavioral | 152 |
| abstract_inverted_index.controlled | 104 |
| abstract_inverted_index.correlates | 123 |
| abstract_inverted_index.dimensions | 81 |
| abstract_inverted_index.distortion | 57, 85, 122 |
| abstract_inverted_index.estimation | 161 |
| abstract_inverted_index.expression | 77 |
| abstract_inverted_index.motivating | 10 |
| abstract_inverted_index.multiplier | 91 |
| abstract_inverted_index.Approximate | 14 |
| abstract_inverted_index.Multipliers | 15 |
| abstract_inverted_index.alternative | 150 |
| abstract_inverted_index.consumption | 20 |
| abstract_inverted_index.convolution | 110 |
| abstract_inverted_index.implemented | 137 |
| abstract_inverted_index.incorporate | 103 |
| abstract_inverted_index.lightweight | 149 |
| abstract_inverted_index.operations, | 9 |
| abstract_inverted_index.statistical | 48 |
| abstract_inverted_index.configurable | 133 |
| abstract_inverted_index.degradation, | 129 |
| abstract_inverted_index.demonstrates | 83 |
| abstract_inverted_index.mathematical | 27 |
| abstract_inverted_index.simulations, | 156 |
| abstract_inverted_index.accelerators. | 23 |
| abstract_inverted_index.distributions | 33 |
| abstract_inverted_index.predominantly | 87 |
| abstract_inverted_index.Multiplication | 61 |
| abstract_inverted_index.underdeveloped. | 38 |
| abstract_inverted_index.characterization | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.73614003 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |