Approximate solutions of transient reaction-diffusion equations for second-order regeneration at spherical microelectrodes via HPM Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55214/2576-8484.v9i9.10155
The purpose of this study is to investigate the transient behavior of a second-order regeneration reaction at spherical microelectrodes, where nonlinear reaction–diffusion dynamics govern the system response. The research is designed to capture the interplay between electrochemical electron transfer and the subsequent homogeneous chemical reaction that regenerates the electroactive species, a process of considerable importance in electrochemical sensors and catalytic systems. The methodology combines analytical and numerical approaches: the homotopy perturbation method (HPM) is applied to derive approximate solutions for non-steady-state concentrations and current responses, while numerical simulations are carried out using Scilab to ensure accuracy and reliability. The approach effectively manages the inherent nonlinearity of the governing equations, offering tractable expressions for system behavior. The findings demonstrate strong agreement between the HPM-based analytical solutions and numerical simulations, confirming the validity of the proposed approach. The study concludes that HPM is a robust and efficient tool for analyzing nonlinear electrochemical systems. The practical implications highlight its potential application in the modeling and optimization of electrochemical devices, such as biosensors, microelectrodes, and catalytic fuel cells, where transient dynamics and regeneration mechanisms play a critical role.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55214/2576-8484.v9i9.10155
- https://learning-gate.com/index.php/2576-8484/article/download/10155/3304
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4414674865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414674865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55214/2576-8484.v9i9.10155Digital Object Identifier
- Title
-
Approximate solutions of transient reaction-diffusion equations for second-order regeneration at spherical microelectrodes via HPMWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-23Full publication date if available
- Authors
-
R. Pratibha Nalini, A. Meena, L. Rajendran, Mohammad IzadiList of authors in order
- Landing page
-
https://doi.org/10.55214/2576-8484.v9i9.10155Publisher landing page
- PDF URL
-
https://learning-gate.com/index.php/2576-8484/article/download/10155/3304Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://learning-gate.com/index.php/2576-8484/article/download/10155/3304Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414674865 |
|---|---|
| doi | https://doi.org/10.55214/2576-8484.v9i9.10155 |
| ids.doi | https://doi.org/10.55214/2576-8484.v9i9.10155 |
| ids.openalex | https://openalex.org/W4414674865 |
| fwci | 0.0 |
| type | article |
| title | Approximate solutions of transient reaction-diffusion equations for second-order regeneration at spherical microelectrodes via HPM |
| biblio.issue | 9 |
| biblio.volume | 9 |
| biblio.last_page | 1483 |
| biblio.first_page | 1471 |
| topics[0].id | https://openalex.org/T12850 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.6503000259399414 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Field-Flow Fractionation Techniques |
| topics[1].id | https://openalex.org/T11451 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.5934000015258789 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Machining and Optimization Techniques |
| topics[2].id | https://openalex.org/T11053 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.5658000111579895 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Process Optimization and Integration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.55214/2576-8484.v9i9.10155 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188960 |
| locations[0].source.issn | 2576-8484 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2576-8484 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Edelweiss Applied Science and Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10155/3304 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Edelweiss Applied Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.55214/2576-8484.v9i9.10155 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063135392 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | R. Pratibha Nalini |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, Saraswathi Narayanan College, Madurai-625022, India. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rajendran Nalini |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, Saraswathi Narayanan College, Madurai-625022, India. |
| authorships[1].author.id | https://openalex.org/A5111526805 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A. Meena |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Saraswathi Narayanan College, Madurai-625022, India. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Athimoolam Meena |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Saraswathi Narayanan College, Madurai-625022, India. |
| authorships[2].author.id | https://openalex.org/A5078476019 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2003-4553 |
| authorships[2].author.display_name | L. Rajendran |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I34628043 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai- 603112, India. |
| authorships[2].institutions[0].id | https://openalex.org/I34628043 |
| authorships[2].institutions[0].ror | https://ror.org/05dpv4c71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I34628043 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | AMET University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lakshmanan Rajendran |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai- 603112, India. |
| authorships[3].author.id | https://openalex.org/A5023146926 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6116-4928 |
| authorships[3].author.display_name | Mohammad Izadi |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I115566878 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran. |
| authorships[3].institutions[0].id | https://openalex.org/I115566878 |
| authorships[3].institutions[0].ror | https://ror.org/04zn42r77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I115566878 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Shahid Bahonar University of Kerman |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mohammad Izadi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://learning-gate.com/index.php/2576-8484/article/download/10155/3304 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Approximate solutions of transient reaction-diffusion equations for second-order regeneration at spherical microelectrodes via HPM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12850 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.6503000259399414 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Field-Flow Fractionation Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55214/2576-8484.v9i9.10155 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188960 |
| best_oa_location.source.issn | 2576-8484 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2576-8484 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Edelweiss Applied Science and Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10155/3304 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Edelweiss Applied Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.55214/2576-8484.v9i9.10155 |
| primary_location.id | doi:10.55214/2576-8484.v9i9.10155 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188960 |
| primary_location.source.issn | 2576-8484 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2576-8484 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Edelweiss Applied Science and Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10155/3304 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Edelweiss Applied Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.55214/2576-8484.v9i9.10155 |
| publication_date | 2025-09-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 50, 141, 181 |
| abstract_inverted_index.as | 167 |
| abstract_inverted_index.at | 16 |
| abstract_inverted_index.in | 55, 158 |
| abstract_inverted_index.is | 5, 29, 73, 140 |
| abstract_inverted_index.of | 2, 11, 52, 105, 131, 163 |
| abstract_inverted_index.to | 6, 31, 75, 93 |
| abstract_inverted_index.HPM | 139 |
| abstract_inverted_index.The | 0, 27, 61, 98, 115, 135, 151 |
| abstract_inverted_index.and | 39, 58, 65, 82, 96, 125, 143, 161, 170, 177 |
| abstract_inverted_index.are | 88 |
| abstract_inverted_index.for | 79, 112, 146 |
| abstract_inverted_index.its | 155 |
| abstract_inverted_index.out | 90 |
| abstract_inverted_index.the | 8, 24, 33, 40, 47, 68, 102, 106, 121, 129, 132, 159 |
| abstract_inverted_index.fuel | 172 |
| abstract_inverted_index.play | 180 |
| abstract_inverted_index.such | 166 |
| abstract_inverted_index.that | 45, 138 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.tool | 145 |
| abstract_inverted_index.(HPM) | 72 |
| abstract_inverted_index.role. | 183 |
| abstract_inverted_index.study | 4, 136 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index.where | 19, 174 |
| abstract_inverted_index.while | 85 |
| abstract_inverted_index.Scilab | 92 |
| abstract_inverted_index.cells, | 173 |
| abstract_inverted_index.derive | 76 |
| abstract_inverted_index.ensure | 94 |
| abstract_inverted_index.govern | 23 |
| abstract_inverted_index.method | 71 |
| abstract_inverted_index.robust | 142 |
| abstract_inverted_index.strong | 118 |
| abstract_inverted_index.system | 25, 113 |
| abstract_inverted_index.applied | 74 |
| abstract_inverted_index.between | 35, 120 |
| abstract_inverted_index.capture | 32 |
| abstract_inverted_index.carried | 89 |
| abstract_inverted_index.current | 83 |
| abstract_inverted_index.manages | 101 |
| abstract_inverted_index.process | 51 |
| abstract_inverted_index.purpose | 1 |
| abstract_inverted_index.sensors | 57 |
| abstract_inverted_index.accuracy | 95 |
| abstract_inverted_index.approach | 99 |
| abstract_inverted_index.behavior | 10 |
| abstract_inverted_index.chemical | 43 |
| abstract_inverted_index.combines | 63 |
| abstract_inverted_index.critical | 182 |
| abstract_inverted_index.designed | 30 |
| abstract_inverted_index.devices, | 165 |
| abstract_inverted_index.dynamics | 22, 176 |
| abstract_inverted_index.electron | 37 |
| abstract_inverted_index.findings | 116 |
| abstract_inverted_index.homotopy | 69 |
| abstract_inverted_index.inherent | 103 |
| abstract_inverted_index.modeling | 160 |
| abstract_inverted_index.offering | 109 |
| abstract_inverted_index.proposed | 133 |
| abstract_inverted_index.reaction | 15, 44 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.species, | 49 |
| abstract_inverted_index.systems. | 60, 150 |
| abstract_inverted_index.transfer | 38 |
| abstract_inverted_index.validity | 130 |
| abstract_inverted_index.HPM-based | 122 |
| abstract_inverted_index.agreement | 119 |
| abstract_inverted_index.analyzing | 147 |
| abstract_inverted_index.approach. | 134 |
| abstract_inverted_index.behavior. | 114 |
| abstract_inverted_index.catalytic | 59, 171 |
| abstract_inverted_index.concludes | 137 |
| abstract_inverted_index.efficient | 144 |
| abstract_inverted_index.governing | 107 |
| abstract_inverted_index.highlight | 154 |
| abstract_inverted_index.interplay | 34 |
| abstract_inverted_index.nonlinear | 20, 148 |
| abstract_inverted_index.numerical | 66, 86, 126 |
| abstract_inverted_index.potential | 156 |
| abstract_inverted_index.practical | 152 |
| abstract_inverted_index.response. | 26 |
| abstract_inverted_index.solutions | 78, 124 |
| abstract_inverted_index.spherical | 17 |
| abstract_inverted_index.tractable | 110 |
| abstract_inverted_index.transient | 9, 175 |
| abstract_inverted_index.analytical | 64, 123 |
| abstract_inverted_index.confirming | 128 |
| abstract_inverted_index.equations, | 108 |
| abstract_inverted_index.importance | 54 |
| abstract_inverted_index.mechanisms | 179 |
| abstract_inverted_index.responses, | 84 |
| abstract_inverted_index.subsequent | 41 |
| abstract_inverted_index.application | 157 |
| abstract_inverted_index.approaches: | 67 |
| abstract_inverted_index.approximate | 77 |
| abstract_inverted_index.biosensors, | 168 |
| abstract_inverted_index.demonstrate | 117 |
| abstract_inverted_index.effectively | 100 |
| abstract_inverted_index.expressions | 111 |
| abstract_inverted_index.homogeneous | 42 |
| abstract_inverted_index.investigate | 7 |
| abstract_inverted_index.methodology | 62 |
| abstract_inverted_index.regenerates | 46 |
| abstract_inverted_index.simulations | 87 |
| abstract_inverted_index.considerable | 53 |
| abstract_inverted_index.implications | 153 |
| abstract_inverted_index.nonlinearity | 104 |
| abstract_inverted_index.optimization | 162 |
| abstract_inverted_index.perturbation | 70 |
| abstract_inverted_index.regeneration | 14, 178 |
| abstract_inverted_index.reliability. | 97 |
| abstract_inverted_index.second-order | 13 |
| abstract_inverted_index.simulations, | 127 |
| abstract_inverted_index.electroactive | 48 |
| abstract_inverted_index.concentrations | 81 |
| abstract_inverted_index.electrochemical | 36, 56, 149, 164 |
| abstract_inverted_index.microelectrodes, | 18, 169 |
| abstract_inverted_index.non-steady-state | 80 |
| abstract_inverted_index.reaction–diffusion | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.48722352 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |