Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.14754
This work concerns the enrichment of Discontinuous Galerkin (DG) bases, so that the resulting scheme provides a much better approximation of steady solutions to hyperbolic systems of balance laws. The basis enrichment leverages a prior - an approximation of the steady solution - which we propose to compute using a Physics-Informed Neural Network (PINN). To that end, after presenting the classical DG scheme, we show how to enrich its basis with a prior. Convergence results and error estimates follow, in which we prove that the basis with prior does not change the order of convergence, and that the error constant is improved. To construct the prior, we elect to use parametric PINNs, which we introduce, as well as the algorithms to construct a prior from PINNs. We finally perform several validation experiments on four different hyperbolic balance laws to highlight the properties of the scheme. Namely, we show that the DG scheme with prior is much more accurate on steady solutions than the DG scheme without prior, while retaining the same approximation quality on unsteady solutions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.14754
- https://arxiv.org/pdf/2310.14754
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387929430
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387929430Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.14754Digital Object Identifier
- Title
-
Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-23Full publication date if available
- Authors
-
Emmanuel Franck, Victor Michel-Dansac, Laurent NavoretList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.14754Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.14754Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.14754Direct OA link when available
- Concepts
-
Convergence (economics), Basis (linear algebra), Scheme (mathematics), Applied mathematics, Artificial neural network, Construct (python library), Discontinuous Galerkin method, Galerkin method, Parametric statistics, Computer science, Mathematics, Algorithm, Mathematical optimization, Physics, Mathematical analysis, Artificial intelligence, Finite element method, Geometry, Programming language, Economics, Thermodynamics, Economic growth, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387929430 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.14754 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.14754 |
| ids.openalex | https://openalex.org/W4387929430 |
| fwci | |
| type | preprint |
| title | Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10339 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Advanced Numerical Methods in Computational Mathematics |
| topics[2].id | https://openalex.org/T11416 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2612 |
| topics[2].subfield.display_name | Numerical Analysis |
| topics[2].display_name | Numerical methods for differential equations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777303404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.767993688583374 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[0].display_name | Convergence (economics) |
| concepts[1].id | https://openalex.org/C12426560 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6886725425720215 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[1].display_name | Basis (linear algebra) |
| concepts[2].id | https://openalex.org/C77618280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6199275255203247 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[2].display_name | Scheme (mathematics) |
| concepts[3].id | https://openalex.org/C28826006 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6057837605476379 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[3].display_name | Applied mathematics |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5623011589050293 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C2780801425 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5484252572059631 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[5].display_name | Construct (python library) |
| concepts[6].id | https://openalex.org/C92244383 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5481621623039246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q428273 |
| concepts[6].display_name | Discontinuous Galerkin method |
| concepts[7].id | https://openalex.org/C186899397 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5429768562316895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1491980 |
| concepts[7].display_name | Galerkin method |
| concepts[8].id | https://openalex.org/C117251300 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5324612259864807 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[8].display_name | Parametric statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.42589694261550903 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3705756664276123 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34940263628959656 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.33186596632003784 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1753181517124176 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.17288854718208313 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1589275300502777 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C135628077 |
| concepts[16].level | 2 |
| concepts[16].score | 0.1214769184589386 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[16].display_name | Finite element method |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0687418282032013 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C97355855 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[20].display_name | Thermodynamics |
| concepts[21].id | https://openalex.org/C50522688 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[21].display_name | Economic growth |
| concepts[22].id | https://openalex.org/C105795698 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[22].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/convergence |
| keywords[0].score | 0.767993688583374 |
| keywords[0].display_name | Convergence (economics) |
| keywords[1].id | https://openalex.org/keywords/basis |
| keywords[1].score | 0.6886725425720215 |
| keywords[1].display_name | Basis (linear algebra) |
| keywords[2].id | https://openalex.org/keywords/scheme |
| keywords[2].score | 0.6199275255203247 |
| keywords[2].display_name | Scheme (mathematics) |
| keywords[3].id | https://openalex.org/keywords/applied-mathematics |
| keywords[3].score | 0.6057837605476379 |
| keywords[3].display_name | Applied mathematics |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5623011589050293 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/construct |
| keywords[5].score | 0.5484252572059631 |
| keywords[5].display_name | Construct (python library) |
| keywords[6].id | https://openalex.org/keywords/discontinuous-galerkin-method |
| keywords[6].score | 0.5481621623039246 |
| keywords[6].display_name | Discontinuous Galerkin method |
| keywords[7].id | https://openalex.org/keywords/galerkin-method |
| keywords[7].score | 0.5429768562316895 |
| keywords[7].display_name | Galerkin method |
| keywords[8].id | https://openalex.org/keywords/parametric-statistics |
| keywords[8].score | 0.5324612259864807 |
| keywords[8].display_name | Parametric statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.42589694261550903 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3705756664276123 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.34940263628959656 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.33186596632003784 |
| keywords[12].display_name | Mathematical optimization |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.1753181517124176 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.17288854718208313 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.1589275300502777 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/finite-element-method |
| keywords[16].score | 0.1214769184589386 |
| keywords[16].display_name | Finite element method |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.0687418282032013 |
| keywords[17].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.14754 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.14754 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.14754 |
| locations[1].id | doi:10.48550/arxiv.2310.14754 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.14754 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113454379 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Emmanuel Franck |
| authorships[0].affiliations[0].raw_affiliation_string | TONUS - TOkamaks and NUmerical Simulations (France) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Franck, Emmanuel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | TONUS - TOkamaks and NUmerical Simulations (France) |
| authorships[1].author.id | https://openalex.org/A5086114809 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3859-8517 |
| authorships[1].author.display_name | Victor Michel-Dansac |
| authorships[1].affiliations[0].raw_affiliation_string | TONUS - TOkamaks and NUmerical Simulations (France) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michel-Dansac, Victor |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | TONUS - TOkamaks and NUmerical Simulations (France) |
| authorships[2].author.id | https://openalex.org/A5087606567 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Laurent Navoret |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].raw_affiliation_string | TONUS - TOkamaks and NUmerical Simulations (France) |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210118362 |
| authorships[2].affiliations[1].raw_affiliation_string | IRMA - Institut de Recherche Mathématique Avancée (7 rue René-Descartes, 67084 Strasbourg Cedex, France - France) |
| authorships[2].institutions[0].id | https://openalex.org/I4210118362 |
| authorships[2].institutions[0].ror | https://ror.org/02hwgty18 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I4210118362, https://openalex.org/I4210141950, https://openalex.org/I68947357 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Institut de Recherche Mathématique Avancée |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Navoret, Laurent |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IRMA - Institut de Recherche Mathématique Avancée (7 rue René-Descartes, 67084 Strasbourg Cedex, France - France), TONUS - TOkamaks and NUmerical Simulations (France) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.14754 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W4388145910, https://openalex.org/W2381570729, https://openalex.org/W1976205134, https://openalex.org/W4248336175, https://openalex.org/W2031260042, https://openalex.org/W2391445434, https://openalex.org/W2162026849, https://openalex.org/W2394687667, https://openalex.org/W2887215440 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.14754 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.14754 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.14754 |
| primary_location.id | pmh:oai:arXiv.org:2310.14754 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.14754 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.14754 |
| publication_date | 2023-10-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 35, 42 |
| abstract_inverted_index.a | 16, 33, 49, 71, 122 |
| abstract_inverted_index.DG | 61, 150, 163 |
| abstract_inverted_index.To | 54, 102 |
| abstract_inverted_index.We | 126 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.as | 115, 117 |
| abstract_inverted_index.in | 79 |
| abstract_inverted_index.is | 100, 154 |
| abstract_inverted_index.of | 5, 20, 26, 38, 93, 142 |
| abstract_inverted_index.on | 132, 158, 173 |
| abstract_inverted_index.so | 10 |
| abstract_inverted_index.to | 23, 46, 66, 108, 120, 138 |
| abstract_inverted_index.we | 44, 63, 81, 106, 113, 146 |
| abstract_inverted_index.The | 29 |
| abstract_inverted_index.and | 75, 95 |
| abstract_inverted_index.how | 65 |
| abstract_inverted_index.its | 68 |
| abstract_inverted_index.not | 89 |
| abstract_inverted_index.the | 3, 12, 39, 59, 84, 91, 97, 104, 118, 140, 143, 149, 162, 169 |
| abstract_inverted_index.use | 109 |
| abstract_inverted_index.(DG) | 8 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.does | 88 |
| abstract_inverted_index.end, | 56 |
| abstract_inverted_index.four | 133 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.laws | 137 |
| abstract_inverted_index.more | 156 |
| abstract_inverted_index.much | 17, 155 |
| abstract_inverted_index.same | 170 |
| abstract_inverted_index.show | 64, 147 |
| abstract_inverted_index.than | 161 |
| abstract_inverted_index.that | 11, 55, 83, 96, 148 |
| abstract_inverted_index.well | 116 |
| abstract_inverted_index.with | 70, 86, 152 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.after | 57 |
| abstract_inverted_index.basis | 30, 69, 85 |
| abstract_inverted_index.elect | 107 |
| abstract_inverted_index.error | 76, 98 |
| abstract_inverted_index.laws. | 28 |
| abstract_inverted_index.order | 92 |
| abstract_inverted_index.prior | 34, 87, 123, 153 |
| abstract_inverted_index.prove | 82 |
| abstract_inverted_index.using | 48 |
| abstract_inverted_index.which | 43, 80, 112 |
| abstract_inverted_index.while | 167 |
| abstract_inverted_index.Neural | 51 |
| abstract_inverted_index.PINNs, | 111 |
| abstract_inverted_index.PINNs. | 125 |
| abstract_inverted_index.bases, | 9 |
| abstract_inverted_index.better | 18 |
| abstract_inverted_index.change | 90 |
| abstract_inverted_index.enrich | 67 |
| abstract_inverted_index.prior, | 105, 166 |
| abstract_inverted_index.prior. | 72 |
| abstract_inverted_index.scheme | 14, 151, 164 |
| abstract_inverted_index.steady | 21, 40, 159 |
| abstract_inverted_index.(PINN). | 53 |
| abstract_inverted_index.Namely, | 145 |
| abstract_inverted_index.Network | 52 |
| abstract_inverted_index.balance | 27, 136 |
| abstract_inverted_index.compute | 47 |
| abstract_inverted_index.finally | 127 |
| abstract_inverted_index.follow, | 78 |
| abstract_inverted_index.perform | 128 |
| abstract_inverted_index.propose | 45 |
| abstract_inverted_index.quality | 172 |
| abstract_inverted_index.results | 74 |
| abstract_inverted_index.scheme, | 62 |
| abstract_inverted_index.scheme. | 144 |
| abstract_inverted_index.several | 129 |
| abstract_inverted_index.systems | 25 |
| abstract_inverted_index.without | 165 |
| abstract_inverted_index.Galerkin | 7 |
| abstract_inverted_index.accurate | 157 |
| abstract_inverted_index.concerns | 2 |
| abstract_inverted_index.constant | 99 |
| abstract_inverted_index.provides | 15 |
| abstract_inverted_index.solution | 41 |
| abstract_inverted_index.unsteady | 174 |
| abstract_inverted_index.classical | 60 |
| abstract_inverted_index.construct | 103, 121 |
| abstract_inverted_index.different | 134 |
| abstract_inverted_index.estimates | 77 |
| abstract_inverted_index.highlight | 139 |
| abstract_inverted_index.improved. | 101 |
| abstract_inverted_index.leverages | 32 |
| abstract_inverted_index.resulting | 13 |
| abstract_inverted_index.retaining | 168 |
| abstract_inverted_index.solutions | 22, 160 |
| abstract_inverted_index.algorithms | 119 |
| abstract_inverted_index.enrichment | 4, 31 |
| abstract_inverted_index.hyperbolic | 24, 135 |
| abstract_inverted_index.introduce, | 114 |
| abstract_inverted_index.parametric | 110 |
| abstract_inverted_index.presenting | 58 |
| abstract_inverted_index.properties | 141 |
| abstract_inverted_index.solutions. | 175 |
| abstract_inverted_index.validation | 130 |
| abstract_inverted_index.Convergence | 73 |
| abstract_inverted_index.experiments | 131 |
| abstract_inverted_index.convergence, | 94 |
| abstract_inverted_index.Discontinuous | 6 |
| abstract_inverted_index.approximation | 19, 37, 171 |
| abstract_inverted_index.Physics-Informed | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |