Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202311.0374.v1
Partial differential equations (PDEs) are used to describe a wide range of phenomena, such as heat transfer, fluid dynamics, and quantum mechanics. By solving PDEs, we can ob- tain insights into the behavior of the system and make predictions about its future evolution. Conventional numerical methods for obtaining the approximate solutions of PDEs may re- quire extensive computational resources and time, especially for complex PDEs and large- scale problems. The recently developed physics-informed neural network (PINN) has shown promise in a variety of scientific and engineering fields by incorporating physical laws into the loss functions of the neural network (NN). In addition, the training of PINN does not require ground truth data, but it has poor generalization ability to unseen domains. On the other hand, a convolutional neural network (CNN) has fast inference and better generalization ability, but it requires a large amount of training data. Taking the advantages of PINN and CNN by using Legendre multiwavelets (LMWs) as basis functions, we introduce a new method to approach the PDEs in this paper, namely Physics-Informed Legendre Multiwavelets CNN (PiLMWs-CNN), in order to continuously approximate a grid-based state representation that can be handled by a CNN. PiLMWs-CNN enable us to train our models using only physics-informed loss functions without any pre- computed training data, simultaneously providing fast and continuous solutions that gener- alize to previously unknown domains. In particular, the LMWs can simultaneously possess compact support, orthogonality, symmetry, high smoothness, and high approximation order. Compared to orthonormal polynomial (OP) bases, the approximation accuracy can be greatly increased and computation costs can be significantly reduced by using LMWs. We applied PiLMWs-CNN to approximate the damped wave equation, incompressible Navier-Stokes (N- S) equation, and two-dimensional heat conduction equation. The experimental results show that this method provides more accurate, efficient, and fast convergence with better stability when approximating the solution of PDEs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202311.0374.v1
- https://www.preprints.org/manuscript/202311.0374/v1/download
- OA Status
- green
- Cited By
- 1
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388477945
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388477945Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202311.0374.v1Digital Object Identifier
- Title
-
Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNNWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-06Full publication date if available
- Authors
-
Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin ZhangList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202311.0374.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202311.0374/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202311.0374/v1/downloadDirect OA link when available
- Concepts
-
Partial differential equation, Generalization, Legendre polynomials, Legendre wavelet, Convolutional neural network, Computer science, Inference, Artificial intelligence, Applied mathematics, Artificial neural network, Legendre transformation, Algorithm, Theoretical computer science, Mathematics, Wavelet, Wavelet transform, Mathematical analysis, Discrete wavelet transformTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388477945 |
|---|---|
| doi | https://doi.org/10.20944/preprints202311.0374.v1 |
| ids.doi | https://doi.org/10.20944/preprints202311.0374.v1 |
| ids.openalex | https://openalex.org/W4388477945 |
| fwci | 0.21567518 |
| type | preprint |
| title | Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9553999900817871 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9136999845504761 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C93779851 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6760543584823608 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[0].display_name | Partial differential equation |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6128638982772827 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C111458787 |
| concepts[2].level | 2 |
| concepts[2].score | 0.611734926700592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q215405 |
| concepts[2].display_name | Legendre polynomials |
| concepts[3].id | https://openalex.org/C123769847 |
| concepts[3].level | 5 |
| concepts[3].score | 0.552100419998169 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6517888 |
| concepts[3].display_name | Legendre wavelet |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5506953597068787 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.533881425857544 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5134697556495667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.448491632938385 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4345044195652008 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4330856204032898 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C116594300 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4260195791721344 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q908652 |
| concepts[10].display_name | Legendre transformation |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3974326550960541 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3421071171760559 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.30503422021865845 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C47432892 |
| concepts[14].level | 2 |
| concepts[14].score | 0.289628267288208 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[14].display_name | Wavelet |
| concepts[15].id | https://openalex.org/C196216189 |
| concepts[15].level | 3 |
| concepts[15].score | 0.17724299430847168 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[15].display_name | Wavelet transform |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13058239221572876 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C46286280 |
| concepts[17].level | 4 |
| concepts[17].score | 0.08006152510643005 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[17].display_name | Discrete wavelet transform |
| keywords[0].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[0].score | 0.6760543584823608 |
| keywords[0].display_name | Partial differential equation |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.6128638982772827 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/legendre-polynomials |
| keywords[2].score | 0.611734926700592 |
| keywords[2].display_name | Legendre polynomials |
| keywords[3].id | https://openalex.org/keywords/legendre-wavelet |
| keywords[3].score | 0.552100419998169 |
| keywords[3].display_name | Legendre wavelet |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5506953597068787 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.533881425857544 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.5134697556495667 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.448491632938385 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.4345044195652008 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4330856204032898 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/legendre-transformation |
| keywords[10].score | 0.4260195791721344 |
| keywords[10].display_name | Legendre transformation |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3974326550960541 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.3421071171760559 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.30503422021865845 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/wavelet |
| keywords[14].score | 0.289628267288208 |
| keywords[14].display_name | Wavelet |
| keywords[15].id | https://openalex.org/keywords/wavelet-transform |
| keywords[15].score | 0.17724299430847168 |
| keywords[15].display_name | Wavelet transform |
| keywords[16].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[16].score | 0.13058239221572876 |
| keywords[16].display_name | Mathematical analysis |
| keywords[17].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[17].score | 0.08006152510643005 |
| keywords[17].display_name | Discrete wavelet transform |
| language | en |
| locations[0].id | doi:10.20944/preprints202311.0374.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202311.0374/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202311.0374.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5047418378 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4921-7815 |
| authorships[0].author.display_name | Yahong Wang |
| authorships[0].countries | CN, MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I111950717 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, Macau University of Science and Technology, Macau, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I111950717 |
| authorships[0].institutions[1].ror | https://ror.org/03jqs2n27 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[0].institutions[1].country_code | MO |
| authorships[0].institutions[1].display_name | Macau University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yahong Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Macau University of Science and Technology, Macau, China, Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| authorships[1].author.id | https://openalex.org/A5017052768 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2664-4413 |
| authorships[1].author.display_name | Wenmin Wang |
| authorships[1].countries | CN, MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Macau University of Science and Technology, Macau, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I50632499 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China |
| authorships[1].institutions[0].id | https://openalex.org/I50632499 |
| authorships[1].institutions[0].ror | https://ror.org/04vgbd477 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I50632499 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I111950717 |
| authorships[1].institutions[1].ror | https://ror.org/03jqs2n27 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[1].institutions[1].country_code | MO |
| authorships[1].institutions[1].display_name | Macau University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenmin Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China, School of Computer Science and Engineering, Macau University of Science and Technology, Macau, China |
| authorships[2].author.id | https://openalex.org/A5026537139 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1772-6150 |
| authorships[2].author.display_name | Cheng Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100523825 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hongbo Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| authorships[3].institutions[0].id | https://openalex.org/I125839683 |
| authorships[3].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongbo Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| authorships[4].author.id | https://openalex.org/A5107979687 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-4507-3231 |
| authorships[4].author.display_name | Ruimin Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| authorships[4].institutions[0].id | https://openalex.org/I125839683 |
| authorships[4].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ruimin Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhuhai Campus, Beijing Institute of Technology, Zhuhai, Guangdong 519088, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202311.0374/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W3020087995, https://openalex.org/W2079040030, https://openalex.org/W2385225694, https://openalex.org/W2736737644, https://openalex.org/W2153062960, https://openalex.org/W2379187670, https://openalex.org/W2025296287, https://openalex.org/W2012772130, https://openalex.org/W2061262082, https://openalex.org/W2008628019 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202311.0374.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202311.0374/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202311.0374.v1 |
| primary_location.id | doi:10.20944/preprints202311.0374.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202311.0374/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202311.0374.v1 |
| publication_date | 2023-11-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6601430172, https://openalex.org/W1981276685, https://openalex.org/W1564524050, https://openalex.org/W2199004907, https://openalex.org/W6813809844, https://openalex.org/W372225658, https://openalex.org/W4255567990, https://openalex.org/W6769729031, https://openalex.org/W3122314732, https://openalex.org/W2139923370, https://openalex.org/W2025349820, https://openalex.org/W4308829739, https://openalex.org/W1512985645, https://openalex.org/W2497646188, https://openalex.org/W1965300492, https://openalex.org/W2212412950, https://openalex.org/W3020102814, https://openalex.org/W3014468003, https://openalex.org/W4282576594, https://openalex.org/W2979786244, https://openalex.org/W4287077061, https://openalex.org/W2899283552, https://openalex.org/W4386853640, https://openalex.org/W3092923133, https://openalex.org/W4309566295, https://openalex.org/W4221019179, https://openalex.org/W4285661771, https://openalex.org/W3094694204, https://openalex.org/W1882999432, https://openalex.org/W3090578221, https://openalex.org/W3010839048, https://openalex.org/W4311988656, https://openalex.org/W2100917607, https://openalex.org/W2804005492, https://openalex.org/W3137474564, https://openalex.org/W4312013398, https://openalex.org/W3202621745, https://openalex.org/W4214523560, https://openalex.org/W2256722378, https://openalex.org/W4300650163, https://openalex.org/W2908541468, https://openalex.org/W2137983211, https://openalex.org/W3014009018, https://openalex.org/W3159466351, https://openalex.org/W2570723876, https://openalex.org/W2974897215, https://openalex.org/W2980396542, https://openalex.org/W2058330335, https://openalex.org/W2056352173, https://openalex.org/W2919958648, https://openalex.org/W2052728710, https://openalex.org/W3200372603, https://openalex.org/W4238727151, https://openalex.org/W2241289505, https://openalex.org/W4226419720, https://openalex.org/W3101260193 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 8, 80, 125, 140, 163, 184, 193 |
| abstract_inverted_index.By | 22 |
| abstract_inverted_index.In | 100, 226 |
| abstract_inverted_index.On | 121 |
| abstract_inverted_index.S) | 278 |
| abstract_inverted_index.We | 266 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.be | 190, 253, 260 |
| abstract_inverted_index.by | 87, 153, 192, 263 |
| abstract_inverted_index.in | 79, 170, 179 |
| abstract_inverted_index.it | 113, 138 |
| abstract_inverted_index.of | 11, 33, 51, 82, 95, 104, 143, 149, 306 |
| abstract_inverted_index.to | 6, 118, 166, 181, 198, 222, 244, 269 |
| abstract_inverted_index.us | 197 |
| abstract_inverted_index.we | 25, 161 |
| abstract_inverted_index.CNN | 152, 177 |
| abstract_inverted_index.The | 69, 285 |
| abstract_inverted_index.and | 19, 36, 59, 65, 84, 133, 151, 216, 239, 256, 280, 296 |
| abstract_inverted_index.any | 208 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.but | 112 |
| abstract_inverted_index.can | 26, 189, 230, 252, 259 |
| abstract_inverted_index.for | 46, 62 |
| abstract_inverted_index.has | 76, 114, 130 |
| abstract_inverted_index.its | 40 |
| abstract_inverted_index.may | 53 |
| abstract_inverted_index.new | 164 |
| abstract_inverted_index.not | 107 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.the | 31, 34, 48, 96, 102, 122, 147, 168, 228, 249, 271, 304 |
| abstract_inverted_index.(OP) | 247 |
| abstract_inverted_index.CNN. | 194 |
| abstract_inverted_index.LMWs | 229 |
| abstract_inverted_index.PDEs | 52, 64, 169 |
| abstract_inverted_index.PINN | 105, 150 |
| abstract_inverted_index.does | 106 |
| abstract_inverted_index.fast | 131, 215, 297 |
| abstract_inverted_index.heat | 15, 282 |
| abstract_inverted_index.high | 237, 240 |
| abstract_inverted_index.into | 30, 91 |
| abstract_inverted_index.laws | 90 |
| abstract_inverted_index.loss | 93, 205 |
| abstract_inverted_index.make | 37 |
| abstract_inverted_index.more | 293 |
| abstract_inverted_index.only | 203 |
| abstract_inverted_index.poor | 115 |
| abstract_inverted_index.tain | 28 |
| abstract_inverted_index.that | 188, 219, 289 |
| abstract_inverted_index.this | 171, 290 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.wave | 273 |
| abstract_inverted_index.when | 302 |
| abstract_inverted_index.wide | 9 |
| abstract_inverted_index.with | 299 |
| abstract_inverted_index.(CNN) | 129 |
| abstract_inverted_index.(NN). | 99 |
| abstract_inverted_index.LMWs. | 265 |
| abstract_inverted_index.PDEs, | 24 |
| abstract_inverted_index.PDEs. | 307 |
| abstract_inverted_index.about | 39 |
| abstract_inverted_index.alize | 221 |
| abstract_inverted_index.basis | 159 |
| abstract_inverted_index.costs | 258 |
| abstract_inverted_index.data, | 111, 212 |
| abstract_inverted_index.large | 141 |
| abstract_inverted_index.order | 180 |
| abstract_inverted_index.other | 123 |
| abstract_inverted_index.quire | 55 |
| abstract_inverted_index.range | 10 |
| abstract_inverted_index.scale | 67 |
| abstract_inverted_index.state | 186 |
| abstract_inverted_index.time, | 60 |
| abstract_inverted_index.train | 199 |
| abstract_inverted_index.truth | 110 |
| abstract_inverted_index.using | 154, 202, 264 |
| abstract_inverted_index.(LMWs) | 157 |
| abstract_inverted_index.(PDEs) | 3 |
| abstract_inverted_index.(PINN) | 75 |
| abstract_inverted_index.Taking | 146 |
| abstract_inverted_index.amount | 142 |
| abstract_inverted_index.bases, | 248 |
| abstract_inverted_index.better | 134, 300 |
| abstract_inverted_index.damped | 272 |
| abstract_inverted_index.enable | 196 |
| abstract_inverted_index.future | 41 |
| abstract_inverted_index.ground | 109 |
| abstract_inverted_index.method | 165, 291 |
| abstract_inverted_index.models | 201 |
| abstract_inverted_index.neural | 73, 97, 127 |
| abstract_inverted_index.paper, | 172 |
| abstract_inverted_index.system | 35 |
| abstract_inverted_index.unseen | 119 |
| abstract_inverted_index.fluid | 17 |
| abstract_inverted_index.Partial | 0 |
| abstract_inverted_index.ability | 117 |
| abstract_inverted_index.compact | 233 |
| abstract_inverted_index.complex | 63 |
| abstract_inverted_index.handled | 191 |
| abstract_inverted_index.methods | 45 |
| abstract_inverted_index.network | 74, 98, 128 |
| abstract_inverted_index.promise | 78 |
| abstract_inverted_index.quantum | 20 |
| abstract_inverted_index.reduced | 262 |
| abstract_inverted_index.results | 287 |
| abstract_inverted_index.solving | 23 |
| abstract_inverted_index.unknown | 224 |
| abstract_inverted_index.variety | 81 |
| abstract_inverted_index.without | 207 |
| abstract_inverted_index.fields | 86 |
| abstract_inverted_index.Compared | 243 |
| abstract_inverted_index.Legendre | 155, 175 |
| abstract_inverted_index.ability, | 136 |
| abstract_inverted_index.accuracy | 251 |
| abstract_inverted_index.approach | 167 |
| abstract_inverted_index.as
 | 158 |
| abstract_inverted_index.behavior | 32 |
| abstract_inverted_index.computed | 210 |
| abstract_inverted_index.describe | 7 |
| abstract_inverted_index.domains. | 120, 225 |
| abstract_inverted_index.insights | 29 |
| abstract_inverted_index.physical | 89 |
| abstract_inverted_index.provides | 292 |
| abstract_inverted_index.recently | 70 |
| abstract_inverted_index.requires | 139 |
| abstract_inverted_index.solution | 305 |
| abstract_inverted_index.support, | 234 |
| abstract_inverted_index.training | 103, 144, 211 |
| abstract_inverted_index.(N-
 | 277 |
| abstract_inverted_index.accurate, | 294 |
| abstract_inverted_index.addition, | 101 |
| abstract_inverted_index.but
 | 137 |
| abstract_inverted_index.developed | 71 |
| abstract_inverted_index.dynamics, | 18 |
| abstract_inverted_index.equation, | 274, 279 |
| abstract_inverted_index.equation. | 284 |
| abstract_inverted_index.equations | 2 |
| abstract_inverted_index.extensive | 56 |
| abstract_inverted_index.functions | 94, 206 |
| abstract_inverted_index.increased | 255 |
| abstract_inverted_index.inference | 132 |
| abstract_inverted_index.introduce | 162 |
| abstract_inverted_index.numerical | 44 |
| abstract_inverted_index.ob-
 | 27 |
| abstract_inverted_index.obtaining | 47 |
| abstract_inverted_index.problems. | 68 |
| abstract_inverted_index.providing | 214 |
| abstract_inverted_index.re-
 | 54 |
| abstract_inverted_index.resources | 58 |
| abstract_inverted_index.solutions | 50, 218 |
| abstract_inverted_index.symmetry, | 236 |
| abstract_inverted_index.the
 | 92 |
| abstract_inverted_index.transfer, | 16 |
| abstract_inverted_index.PiLMWs-CNN | 268 |
| abstract_inverted_index.advantages | 148 |
| abstract_inverted_index.conduction | 283 |
| abstract_inverted_index.continuous | 217 |
| abstract_inverted_index.especially | 61 |
| abstract_inverted_index.functions, | 160 |
| abstract_inverted_index.grid-based | 185 |
| abstract_inverted_index.mechanics. | 21 |
| abstract_inverted_index.phenomena, | 12 |
| abstract_inverted_index.polynomial | 246 |
| abstract_inverted_index.pre-
 | 209 |
| abstract_inverted_index.previously | 223 |
| abstract_inverted_index.show
 | 288 |
| abstract_inverted_index.such
 | 13 |
| abstract_inverted_index.approximate | 49, 183, 270 |
| abstract_inverted_index.computation | 257 |
| abstract_inverted_index.convergence | 298 |
| abstract_inverted_index.data.
 | 145 |
| abstract_inverted_index.efficient, | 295 |
| abstract_inverted_index.engineering | 85 |
| abstract_inverted_index.hand,
 | 124 |
| abstract_inverted_index.orthonormal | 245 |
| abstract_inverted_index.particular, | 227 |
| abstract_inverted_index.predictions | 38 |
| abstract_inverted_index.scientific | 83 |
| abstract_inverted_index.shown
 | 77 |
| abstract_inverted_index.smoothness, | 238 |
| abstract_inverted_index.Conventional | 43 |
| abstract_inverted_index.differential | 1 |
| abstract_inverted_index.experimental | 286 |
| abstract_inverted_index.gener-
 | 220 |
| abstract_inverted_index.large-
 | 66 |
| abstract_inverted_index.namely
 | 173 |
| abstract_inverted_index.order.
 | 242 |
| abstract_inverted_index.(PiLMWs-CNN), | 178 |
| abstract_inverted_index.Multiwavelets | 176 |
| abstract_inverted_index.Navier-Stokes | 276 |
| abstract_inverted_index.applied
 | 267 |
| abstract_inverted_index.approximating | 303 |
| abstract_inverted_index.approximation | 241, 250 |
| abstract_inverted_index.computational | 57 |
| abstract_inverted_index.convolutional | 126 |
| abstract_inverted_index.greatly
 | 254 |
| abstract_inverted_index.incorporating | 88 |
| abstract_inverted_index.multiwavelets | 156 |
| abstract_inverted_index.possess
 | 232 |
| abstract_inverted_index.require
 | 108 |
| abstract_inverted_index.generalization | 116, 135 |
| abstract_inverted_index.incompressible | 275 |
| abstract_inverted_index.orthogonality, | 235 |
| abstract_inverted_index.representation | 187 |
| abstract_inverted_index.significantly | 261 |
| abstract_inverted_index.simultaneously | 213, 231 |
| abstract_inverted_index.stability
 | 301 |
| abstract_inverted_index.two-dimensional | 281 |
| abstract_inverted_index.Physics-Informed | 174 |
| abstract_inverted_index.PiLMWs-CNN
 | 195 |
| abstract_inverted_index.evolution.
 | 42 |
| abstract_inverted_index.physics-informed | 72, 204 |
| abstract_inverted_index.continuously
 | 182 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5017052768 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I111950717, https://openalex.org/I50632499 |
| citation_normalized_percentile.value | 0.53416444 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |