Approximations for STERGMs Based on Cross-Sectional Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.03239
Temporal exponential-family random graph models (TERGMs) are a flexible class of network models for the dynamics of tie formation and dissolution. In practice, separable TERGMs (STERGMs) are the subclass most often used, as these permit estimation from inexpensive cross-sectional study designs, and benefit from approximations designed to reduce the computational burden. Improving the approximations are the focus of this paper. We extend the work of Carnegie et al., which addressed the problem of constructing a STERGM with two specific equilibrium properties: a cross-sectional distribution defined by a given exponential-family random graph model (ERGM), and tie durations defined by given constant hazards of dissolution. We start with Carnegie et al.'s observation that the exact result is tractable in the dyad-independent case, and then show that taking the sparse limit of the exact result leads to a different approximation than the one they presented. We show that the new approximation outperforms theirs for sparse, dyad-independent models, and that for dyad-dependent models the errors tend to increase with the level of dependence for both approximations. We then extend the theoretical results of Carnegie et al. to the dyad-dependent case, proving that both the old and new approximations are asymptotically exact as the STERGM time step size goes to zero, for arbitrary dyad-dependent terms and some dyad-dependent constraints. We also show that the continuous-time limit of the discrete-time approximations has exactly the combination of cross-sectional and durational equilibrium behavior that we seek.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2112.03239
- https://arxiv.org/pdf/2112.03239
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226538943
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226538943Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2112.03239Digital Object Identifier
- Title
-
Approximations for STERGMs Based on Cross-Sectional DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-06Full publication date if available
- Authors
-
Chad Klumb, Martina Morris, Steven M. Goodreau, Samuel M. JennessList of authors in order
- Landing page
-
https://arxiv.org/abs/2112.03239Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2112.03239Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2112.03239Direct OA link when available
- Concepts
-
Dyad, Exponential function, Limit (mathematics), Estimator, Applied mathematics, Mathematics, Graph, Exponential random graph models, Computer science, Statistical physics, Random graph, Mathematical optimization, Discrete mathematics, Statistics, Mathematical analysis, Psychology, Physics, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226538943 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2112.03239 |
| ids.doi | https://doi.org/10.48550/arxiv.2112.03239 |
| ids.openalex | https://openalex.org/W4226538943 |
| fwci | |
| type | preprint |
| title | Approximations for STERGMs Based on Cross-Sectional Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T11911 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9617999792098999 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Spatial and Panel Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777716012 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8793047666549683 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5318389 |
| concepts[0].display_name | Dyad |
| concepts[1].id | https://openalex.org/C151376022 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5886538028717041 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q168698 |
| concepts[1].display_name | Exponential function |
| concepts[2].id | https://openalex.org/C151201525 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5665972828865051 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[2].display_name | Limit (mathematics) |
| concepts[3].id | https://openalex.org/C185429906 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5174525380134583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[3].display_name | Estimator |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.508841335773468 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4987664222717285 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4756759703159332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C30549945 |
| concepts[7].level | 4 |
| concepts[7].score | 0.42216286063194275 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5421526 |
| concepts[7].display_name | Exponential random graph models |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3752048909664154 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C121864883 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36784225702285767 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[9].display_name | Statistical physics |
| concepts[10].id | https://openalex.org/C47458327 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3385053873062134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q910404 |
| concepts[10].display_name | Random graph |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32925817370414734 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C118615104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24266523122787476 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[12].display_name | Discrete mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18854740262031555 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11682233214378357 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C77805123 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[17].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/dyad |
| keywords[0].score | 0.8793047666549683 |
| keywords[0].display_name | Dyad |
| keywords[1].id | https://openalex.org/keywords/exponential-function |
| keywords[1].score | 0.5886538028717041 |
| keywords[1].display_name | Exponential function |
| keywords[2].id | https://openalex.org/keywords/limit |
| keywords[2].score | 0.5665972828865051 |
| keywords[2].display_name | Limit (mathematics) |
| keywords[3].id | https://openalex.org/keywords/estimator |
| keywords[3].score | 0.5174525380134583 |
| keywords[3].display_name | Estimator |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.508841335773468 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.4987664222717285 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.4756759703159332 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/exponential-random-graph-models |
| keywords[7].score | 0.42216286063194275 |
| keywords[7].display_name | Exponential random graph models |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3752048909664154 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/statistical-physics |
| keywords[9].score | 0.36784225702285767 |
| keywords[9].display_name | Statistical physics |
| keywords[10].id | https://openalex.org/keywords/random-graph |
| keywords[10].score | 0.3385053873062134 |
| keywords[10].display_name | Random graph |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.32925817370414734 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[12].score | 0.24266523122787476 |
| keywords[12].display_name | Discrete mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.18854740262031555 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.11682233214378357 |
| keywords[14].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2112.03239 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2112.03239 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2112.03239 |
| locations[1].id | doi:10.48550/arxiv.2112.03239 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2112.03239 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066379121 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chad Klumb |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Klumb, Chad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041246861 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1191-3521 |
| authorships[1].author.display_name | Martina Morris |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Morris, Martina |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016671506 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1009-5763 |
| authorships[2].author.display_name | Steven M. Goodreau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Goodreau, Steven M. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044622993 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8840-105X |
| authorships[3].author.display_name | Samuel M. Jenness |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jenness, Samuel M. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2112.03239 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Approximations for STERGMs Based on Cross-Sectional Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W3102036813, https://openalex.org/W2600013268, https://openalex.org/W2359341608, https://openalex.org/W2597949273, https://openalex.org/W3007771191, https://openalex.org/W3106517793, https://openalex.org/W2154529522, https://openalex.org/W1967599767, https://openalex.org/W4225934700, https://openalex.org/W2483587347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2112.03239 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2112.03239 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2112.03239 |
| primary_location.id | pmh:oai:arXiv.org:2112.03239 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2112.03239 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2112.03239 |
| publication_date | 2021-12-06 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 74, 81, 86, 134 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 60, 103, 142, 172, 214 |
| abstract_inverted_index.as | 32, 197 |
| abstract_inverted_index.by | 85, 97 |
| abstract_inverted_index.et | 66, 107, 180 |
| abstract_inverted_index.in | 116 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 10, 16, 57, 64, 72, 101, 128, 167, 178, 221, 229 |
| abstract_inverted_index.to | 46, 133, 162, 182, 204 |
| abstract_inverted_index.we | 236 |
| abstract_inverted_index.al. | 181 |
| abstract_inverted_index.and | 19, 41, 93, 120, 154, 191, 210, 231 |
| abstract_inverted_index.are | 6, 26, 54, 194 |
| abstract_inverted_index.for | 13, 150, 156, 169, 206 |
| abstract_inverted_index.has | 225 |
| abstract_inverted_index.new | 146, 192 |
| abstract_inverted_index.old | 190 |
| abstract_inverted_index.one | 139 |
| abstract_inverted_index.the | 14, 27, 48, 52, 55, 62, 70, 111, 117, 125, 129, 138, 145, 159, 165, 175, 183, 189, 198, 218, 222, 227 |
| abstract_inverted_index.tie | 17, 94 |
| abstract_inverted_index.two | 77 |
| abstract_inverted_index.al., | 67 |
| abstract_inverted_index.also | 215 |
| abstract_inverted_index.both | 170, 188 |
| abstract_inverted_index.from | 36, 43 |
| abstract_inverted_index.goes | 203 |
| abstract_inverted_index.most | 29 |
| abstract_inverted_index.show | 122, 143, 216 |
| abstract_inverted_index.size | 202 |
| abstract_inverted_index.some | 211 |
| abstract_inverted_index.step | 201 |
| abstract_inverted_index.tend | 161 |
| abstract_inverted_index.than | 137 |
| abstract_inverted_index.that | 110, 123, 144, 155, 187, 217, 235 |
| abstract_inverted_index.then | 121, 173 |
| abstract_inverted_index.they | 140 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.time | 200 |
| abstract_inverted_index.with | 76, 105, 164 |
| abstract_inverted_index.work | 63 |
| abstract_inverted_index.al.'s | 108 |
| abstract_inverted_index.case, | 119, 185 |
| abstract_inverted_index.class | 9 |
| abstract_inverted_index.exact | 112, 130, 196 |
| abstract_inverted_index.focus | 56 |
| abstract_inverted_index.given | 87, 98 |
| abstract_inverted_index.graph | 3, 90 |
| abstract_inverted_index.leads | 132 |
| abstract_inverted_index.level | 166 |
| abstract_inverted_index.limit | 127, 220 |
| abstract_inverted_index.model | 91 |
| abstract_inverted_index.often | 30 |
| abstract_inverted_index.seek. | 237 |
| abstract_inverted_index.start | 104 |
| abstract_inverted_index.study | 39 |
| abstract_inverted_index.terms | 209 |
| abstract_inverted_index.these | 33 |
| abstract_inverted_index.used, | 31 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.zero, | 205 |
| abstract_inverted_index.STERGM | 75, 199 |
| abstract_inverted_index.TERGMs | 24 |
| abstract_inverted_index.errors | 160 |
| abstract_inverted_index.extend | 61, 174 |
| abstract_inverted_index.models | 4, 12, 158 |
| abstract_inverted_index.paper. | 59 |
| abstract_inverted_index.permit | 34 |
| abstract_inverted_index.random | 2, 89 |
| abstract_inverted_index.reduce | 47 |
| abstract_inverted_index.result | 113, 131 |
| abstract_inverted_index.sparse | 126 |
| abstract_inverted_index.taking | 124 |
| abstract_inverted_index.theirs | 149 |
| abstract_inverted_index.(ERGM), | 92 |
| abstract_inverted_index.benefit | 42 |
| abstract_inverted_index.burden. | 50 |
| abstract_inverted_index.defined | 84, 96 |
| abstract_inverted_index.exactly | 226 |
| abstract_inverted_index.hazards | 100 |
| abstract_inverted_index.models, | 153 |
| abstract_inverted_index.network | 11 |
| abstract_inverted_index.problem | 71 |
| abstract_inverted_index.proving | 186 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.sparse, | 151 |
| abstract_inverted_index.(TERGMs) | 5 |
| abstract_inverted_index.Carnegie | 65, 106, 179 |
| abstract_inverted_index.Temporal | 0 |
| abstract_inverted_index.behavior | 234 |
| abstract_inverted_index.constant | 99 |
| abstract_inverted_index.designed | 45 |
| abstract_inverted_index.designs, | 40 |
| abstract_inverted_index.dynamics | 15 |
| abstract_inverted_index.flexible | 8 |
| abstract_inverted_index.increase | 163 |
| abstract_inverted_index.specific | 78 |
| abstract_inverted_index.subclass | 28 |
| abstract_inverted_index.(STERGMs) | 25 |
| abstract_inverted_index.Improving | 51 |
| abstract_inverted_index.addressed | 69 |
| abstract_inverted_index.arbitrary | 207 |
| abstract_inverted_index.different | 135 |
| abstract_inverted_index.durations | 95 |
| abstract_inverted_index.formation | 18 |
| abstract_inverted_index.practice, | 22 |
| abstract_inverted_index.separable | 23 |
| abstract_inverted_index.tractable | 115 |
| abstract_inverted_index.dependence | 168 |
| abstract_inverted_index.durational | 232 |
| abstract_inverted_index.estimation | 35 |
| abstract_inverted_index.presented. | 141 |
| abstract_inverted_index.combination | 228 |
| abstract_inverted_index.equilibrium | 79, 233 |
| abstract_inverted_index.inexpensive | 37 |
| abstract_inverted_index.observation | 109 |
| abstract_inverted_index.outperforms | 148 |
| abstract_inverted_index.properties: | 80 |
| abstract_inverted_index.theoretical | 176 |
| abstract_inverted_index.constraints. | 213 |
| abstract_inverted_index.constructing | 73 |
| abstract_inverted_index.dissolution. | 20, 102 |
| abstract_inverted_index.distribution | 83 |
| abstract_inverted_index.approximation | 136, 147 |
| abstract_inverted_index.computational | 49 |
| abstract_inverted_index.discrete-time | 223 |
| abstract_inverted_index.approximations | 44, 53, 193, 224 |
| abstract_inverted_index.asymptotically | 195 |
| abstract_inverted_index.dyad-dependent | 157, 184, 208, 212 |
| abstract_inverted_index.approximations. | 171 |
| abstract_inverted_index.continuous-time | 219 |
| abstract_inverted_index.cross-sectional | 38, 82, 230 |
| abstract_inverted_index.dyad-independent | 118, 152 |
| abstract_inverted_index.exponential-family | 1, 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |