Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional Diffusion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.07756
Magnetic resonance (MR) images collected in 2D scanning protocols typically have large inter-slice spacing, resulting in high in-plane resolution but reduced through-plane resolution. Super-resolution techniques can reduce the inter-slice spacing of 2D scanned MR images, facilitating the downstream visual experience and computer-aided diagnosis. However, most existing super-resolution methods are trained at a fixed scaling ratio, which is inconvenient in clinical settings where MR scanning may have varying inter-slice spacings. To solve this issue, we propose Hierarchical Feature Conditional Diffusion (HiFi-Diff)} for arbitrary reduction of MR inter-slice spacing. Given two adjacent MR slices and the relative positional offset, HiFi-Diff can iteratively convert a Gaussian noise map into any desired in-between MR slice. Furthermore, to enable fine-grained conditioning, the Hierarchical Feature Extraction (HiFE) module is proposed to hierarchically extract conditional features and conduct element-wise modulation. Our experimental results on the publicly available HCP-1200 dataset demonstrate the high-fidelity super-resolution capability of HiFi-Diff and its efficacy in enhancing downstream segmentation performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.07756
- https://arxiv.org/pdf/2304.07756
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366506289
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366506289Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.07756Digital Object Identifier
- Title
-
Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional DiffusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-16Full publication date if available
- Authors
-
Xin Wang, Zhenrong Shen, Zhiyun Song, Sheng Wang, Mengjun Liu, Lichi Zhang, Kai Xuan, Qian WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.07756Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.07756Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.07756Direct OA link when available
- Concepts
-
Computer science, Offset (computer science), Gaussian, Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Segmentation, Reduction (mathematics), Resolution (logic), Wafer, Noise reduction, Algorithm, Computer vision, Mathematics, Physics, Geometry, Linguistics, Quantum mechanics, Programming language, Optoelectronics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366506289 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.07756 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.07756 |
| ids.openalex | https://openalex.org/W4366506289 |
| fwci | |
| type | preprint |
| title | Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional Diffusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13114 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Image Processing Techniques and Applications |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9864000082015991 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6241365075111389 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C175291020 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5959665775299072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1156822 |
| concepts[1].display_name | Offset (computer science) |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5729659199714661 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.559546947479248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5483204126358032 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5059873461723328 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5057687759399414 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C111335779 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5030598044395447 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[7].display_name | Reduction (mathematics) |
| concepts[8].id | https://openalex.org/C138268822 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4550309181213379 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[8].display_name | Resolution (logic) |
| concepts[9].id | https://openalex.org/C160671074 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43423426151275635 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q267131 |
| concepts[9].display_name | Wafer |
| concepts[10].id | https://openalex.org/C163294075 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4222193956375122 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[10].display_name | Noise reduction |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4046958386898041 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35185396671295166 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22221171855926514 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1792413592338562 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11438766121864319 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C49040817 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[19].display_name | Optoelectronics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6241365075111389 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/offset |
| keywords[1].score | 0.5959665775299072 |
| keywords[1].display_name | Offset (computer science) |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.5729659199714661 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.559546947479248 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5483204126358032 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5059873461723328 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5057687759399414 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/reduction |
| keywords[7].score | 0.5030598044395447 |
| keywords[7].display_name | Reduction (mathematics) |
| keywords[8].id | https://openalex.org/keywords/resolution |
| keywords[8].score | 0.4550309181213379 |
| keywords[8].display_name | Resolution (logic) |
| keywords[9].id | https://openalex.org/keywords/wafer |
| keywords[9].score | 0.43423426151275635 |
| keywords[9].display_name | Wafer |
| keywords[10].id | https://openalex.org/keywords/noise-reduction |
| keywords[10].score | 0.4222193956375122 |
| keywords[10].display_name | Noise reduction |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4046958386898041 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.35185396671295166 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.22221171855926514 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.1792413592338562 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.11438766121864319 |
| keywords[15].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.07756 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.07756 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.07756 |
| locations[1].id | doi:10.48550/arxiv.2304.07756 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.07756 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100327844 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8639-3818 |
| authorships[0].author.display_name | Xin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027828897 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1803-472X |
| authorships[1].author.display_name | Zhenrong Shen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shen, Zhenrong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112122710 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhiyun Song |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Song, Zhiyun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100371324 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4210-1670 |
| authorships[3].author.display_name | Sheng Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Sheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5089301448 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4180-1870 |
| authorships[4].author.display_name | Mengjun Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Mengjun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5006447298 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4396-4566 |
| authorships[5].author.display_name | Lichi Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Lichi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5064355694 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6619-8206 |
| authorships[6].author.display_name | Kai Xuan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xuan, Kai |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100391080 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5906-1890 |
| authorships[7].author.display_name | Qian Wang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wang, Qian |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.07756 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-22T00:00:00 |
| display_name | Arbitrary Reduction of MRI Inter-slice Spacing Using Hierarchical Feature Conditional Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13114 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Image Processing Techniques and Applications |
| related_works | https://openalex.org/W1998662473, https://openalex.org/W2075391483, https://openalex.org/W2742348144, https://openalex.org/W2038820605, https://openalex.org/W1985417357, https://openalex.org/W2955207210, https://openalex.org/W2115053376, https://openalex.org/W2367528910, https://openalex.org/W2115779117, https://openalex.org/W1996547193 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.07756 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.07756 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.07756 |
| primary_location.id | pmh:oai:arXiv.org:2304.07756 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.07756 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.07756 |
| publication_date | 2023-04-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 51, 101 |
| abstract_inverted_index.2D | 6, 31 |
| abstract_inverted_index.MR | 33, 62, 84, 90, 109 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.in | 5, 15, 58, 152 |
| abstract_inverted_index.is | 56, 122 |
| abstract_inverted_index.of | 30, 83, 147 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.to | 112, 124 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.Our | 133 |
| abstract_inverted_index.and | 40, 92, 129, 149 |
| abstract_inverted_index.any | 106 |
| abstract_inverted_index.are | 48 |
| abstract_inverted_index.but | 19 |
| abstract_inverted_index.can | 25, 98 |
| abstract_inverted_index.for | 80 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.map | 104 |
| abstract_inverted_index.may | 64 |
| abstract_inverted_index.the | 27, 36, 93, 116, 137, 143 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.(MR) | 2 |
| abstract_inverted_index.have | 10, 65 |
| abstract_inverted_index.high | 16 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.most | 44 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.Given | 87 |
| abstract_inverted_index.fixed | 52 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.noise | 103 |
| abstract_inverted_index.solve | 70 |
| abstract_inverted_index.where | 61 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.(HiFE) | 120 |
| abstract_inverted_index.enable | 113 |
| abstract_inverted_index.images | 3 |
| abstract_inverted_index.issue, | 72 |
| abstract_inverted_index.module | 121 |
| abstract_inverted_index.ratio, | 54 |
| abstract_inverted_index.reduce | 26 |
| abstract_inverted_index.slice. | 110 |
| abstract_inverted_index.slices | 91 |
| abstract_inverted_index.visual | 38 |
| abstract_inverted_index.Feature | 76, 118 |
| abstract_inverted_index.conduct | 130 |
| abstract_inverted_index.convert | 100 |
| abstract_inverted_index.dataset | 141 |
| abstract_inverted_index.desired | 107 |
| abstract_inverted_index.extract | 126 |
| abstract_inverted_index.images, | 34 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.offset, | 96 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.reduced | 20 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.scaling | 53 |
| abstract_inverted_index.scanned | 32 |
| abstract_inverted_index.spacing | 29 |
| abstract_inverted_index.trained | 49 |
| abstract_inverted_index.varying | 66 |
| abstract_inverted_index.Gaussian | 102 |
| abstract_inverted_index.HCP-1200 | 140 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.Magnetic | 0 |
| abstract_inverted_index.adjacent | 89 |
| abstract_inverted_index.clinical | 59 |
| abstract_inverted_index.efficacy | 151 |
| abstract_inverted_index.existing | 45 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.in-plane | 17 |
| abstract_inverted_index.proposed | 123 |
| abstract_inverted_index.publicly | 138 |
| abstract_inverted_index.relative | 94 |
| abstract_inverted_index.scanning | 7, 63 |
| abstract_inverted_index.settings | 60 |
| abstract_inverted_index.spacing, | 13 |
| abstract_inverted_index.spacing. | 86 |
| abstract_inverted_index.Diffusion | 78 |
| abstract_inverted_index.HiFi-Diff | 97, 148 |
| abstract_inverted_index.arbitrary | 81 |
| abstract_inverted_index.available | 139 |
| abstract_inverted_index.collected | 4 |
| abstract_inverted_index.enhancing | 153 |
| abstract_inverted_index.protocols | 8 |
| abstract_inverted_index.reduction | 82 |
| abstract_inverted_index.resonance | 1 |
| abstract_inverted_index.resulting | 14 |
| abstract_inverted_index.spacings. | 68 |
| abstract_inverted_index.typically | 9 |
| abstract_inverted_index.Extraction | 119 |
| abstract_inverted_index.capability | 146 |
| abstract_inverted_index.diagnosis. | 42 |
| abstract_inverted_index.downstream | 37, 154 |
| abstract_inverted_index.experience | 39 |
| abstract_inverted_index.in-between | 108 |
| abstract_inverted_index.positional | 95 |
| abstract_inverted_index.resolution | 18 |
| abstract_inverted_index.techniques | 24 |
| abstract_inverted_index.Conditional | 77 |
| abstract_inverted_index.conditional | 127 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.inter-slice | 12, 28, 67, 85 |
| abstract_inverted_index.iteratively | 99 |
| abstract_inverted_index.modulation. | 132 |
| abstract_inverted_index.resolution. | 22 |
| abstract_inverted_index.(HiFi-Diff)} | 79 |
| abstract_inverted_index.Furthermore, | 111 |
| abstract_inverted_index.Hierarchical | 75, 117 |
| abstract_inverted_index.element-wise | 131 |
| abstract_inverted_index.experimental | 134 |
| abstract_inverted_index.facilitating | 35 |
| abstract_inverted_index.fine-grained | 114 |
| abstract_inverted_index.inconvenient | 57 |
| abstract_inverted_index.performance. | 156 |
| abstract_inverted_index.segmentation | 155 |
| abstract_inverted_index.conditioning, | 115 |
| abstract_inverted_index.high-fidelity | 144 |
| abstract_inverted_index.through-plane | 21 |
| abstract_inverted_index.computer-aided | 41 |
| abstract_inverted_index.hierarchically | 125 |
| abstract_inverted_index.Super-resolution | 23 |
| abstract_inverted_index.super-resolution | 46, 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |