Are Randomized Quantum Linear Systems Solvers Practical? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13766
Randomized quantum algorithms have been proposed in the context of quantum simulation and quantum linear algebra with the goal of constructing shallower circuits than methods based on block encodings. While the algorithmic complexities of such randomized schemes have been shown to be suboptimal, it has been speculated that they may offer benefits in the early fault-tolerant era where circuit depth comes at a premium. In this work, we investigate the end-to-end resource requirements for a randomized quantum linear systems solver to estimate scalar properties of the matrix inverse by combining sampling from a Fourier series with Hamiltonian simulation. We derive explicit bounds on all relevant algorithmic parameters that control the total error. We analyze two algorithmic kernels for Hamiltonian simulation: a second order product formula approximation and a method called random Taylor expansion (RTE). Finally, we provide numerical demonstrations that confirm the validity of our analytical results and question the actual practicality of the randomized Fourier series-based approach for linear systems problems as we show that the sampling complexity can grow exponentially. By providing explicit bounds, our work serves as a bridge between theoretical algorithmic proposals and efficient hardware implementations while also enabling fair comparisons to alternative algorithms that exhibit optimal asymptotic complexities at the cost of large resource overheads.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13766
- https://arxiv.org/pdf/2510.13766
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415277462
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415277462Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13766Digital Object Identifier
- Title
-
Are Randomized Quantum Linear Systems Solvers Practical?Work title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Siddharth Hariprakash, Roel Van Beeumen, Katherine Klymko, Daan CampsList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13766Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13766Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13766Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415277462 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13766 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13766 |
| ids.openalex | https://openalex.org/W4415277462 |
| fwci | |
| type | preprint |
| title | Are Randomized Quantum Linear Systems Solvers Practical? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10682 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.986299991607666 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Quantum Computing Algorithms and Architecture |
| topics[1].id | https://openalex.org/T10622 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9718999862670898 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Quantum Mechanics and Applications |
| topics[2].id | https://openalex.org/T10020 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9693999886512756 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Quantum Information and Cryptography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13766 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13766 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13766 |
| locations[1].id | doi:10.48550/arxiv.2510.13766 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13766 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093547736 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-3524-4724 |
| authorships[0].author.display_name | Siddharth Hariprakash |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hariprakash, Siddharth |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088134474 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2276-1153 |
| authorships[1].author.display_name | Roel Van Beeumen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Van Beeumen, Roel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034924651 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4158-5776 |
| authorships[2].author.display_name | Katherine Klymko |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Klymko, Katherine |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015674933 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0236-4353 |
| authorships[3].author.display_name | Daan Camps |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Camps, Daan |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13766 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Are Randomized Quantum Linear Systems Solvers Practical? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10682 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.986299991607666 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Quantum Computing Algorithms and Architecture |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13766 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13766 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13766 |
| primary_location.id | pmh:oai:arXiv.org:2510.13766 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13766 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13766 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 74, 92, 120, 127, 180 |
| abstract_inverted_index.By | 172 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.We | 98, 112 |
| abstract_inverted_index.as | 162, 179 |
| abstract_inverted_index.at | 61, 203 |
| abstract_inverted_index.be | 41 |
| abstract_inverted_index.by | 88 |
| abstract_inverted_index.in | 6, 52 |
| abstract_inverted_index.it | 43 |
| abstract_inverted_index.of | 9, 19, 33, 84, 143, 152, 206 |
| abstract_inverted_index.on | 26, 102 |
| abstract_inverted_index.to | 40, 80, 195 |
| abstract_inverted_index.we | 67, 135, 163 |
| abstract_inverted_index.all | 103 |
| abstract_inverted_index.and | 12, 126, 147, 186 |
| abstract_inverted_index.can | 169 |
| abstract_inverted_index.era | 56 |
| abstract_inverted_index.for | 73, 117, 158 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.may | 49 |
| abstract_inverted_index.our | 144, 176 |
| abstract_inverted_index.the | 7, 17, 30, 53, 69, 85, 109, 141, 149, 153, 166, 204 |
| abstract_inverted_index.two | 114 |
| abstract_inverted_index.also | 191 |
| abstract_inverted_index.been | 4, 38, 45 |
| abstract_inverted_index.cost | 205 |
| abstract_inverted_index.fair | 193 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.goal | 18 |
| abstract_inverted_index.grow | 170 |
| abstract_inverted_index.have | 3, 37 |
| abstract_inverted_index.show | 164 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.than | 23 |
| abstract_inverted_index.that | 47, 107, 139, 165, 198 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 16, 95 |
| abstract_inverted_index.work | 177 |
| abstract_inverted_index.While | 29 |
| abstract_inverted_index.based | 25 |
| abstract_inverted_index.block | 27 |
| abstract_inverted_index.comes | 60 |
| abstract_inverted_index.depth | 59 |
| abstract_inverted_index.early | 54 |
| abstract_inverted_index.large | 207 |
| abstract_inverted_index.offer | 50 |
| abstract_inverted_index.order | 122 |
| abstract_inverted_index.shown | 39 |
| abstract_inverted_index.total | 110 |
| abstract_inverted_index.where | 57 |
| abstract_inverted_index.while | 190 |
| abstract_inverted_index.work, | 66 |
| abstract_inverted_index.(RTE). | 133 |
| abstract_inverted_index.Taylor | 131 |
| abstract_inverted_index.actual | 150 |
| abstract_inverted_index.bounds | 101 |
| abstract_inverted_index.bridge | 181 |
| abstract_inverted_index.called | 129 |
| abstract_inverted_index.derive | 99 |
| abstract_inverted_index.error. | 111 |
| abstract_inverted_index.linear | 14, 77, 159 |
| abstract_inverted_index.matrix | 86 |
| abstract_inverted_index.method | 128 |
| abstract_inverted_index.random | 130 |
| abstract_inverted_index.scalar | 82 |
| abstract_inverted_index.second | 121 |
| abstract_inverted_index.series | 94 |
| abstract_inverted_index.serves | 178 |
| abstract_inverted_index.solver | 79 |
| abstract_inverted_index.Fourier | 93, 155 |
| abstract_inverted_index.algebra | 15 |
| abstract_inverted_index.analyze | 113 |
| abstract_inverted_index.between | 182 |
| abstract_inverted_index.bounds, | 175 |
| abstract_inverted_index.circuit | 58 |
| abstract_inverted_index.confirm | 140 |
| abstract_inverted_index.context | 8 |
| abstract_inverted_index.control | 108 |
| abstract_inverted_index.exhibit | 199 |
| abstract_inverted_index.formula | 124 |
| abstract_inverted_index.inverse | 87 |
| abstract_inverted_index.kernels | 116 |
| abstract_inverted_index.methods | 24 |
| abstract_inverted_index.optimal | 200 |
| abstract_inverted_index.product | 123 |
| abstract_inverted_index.provide | 136 |
| abstract_inverted_index.quantum | 1, 10, 13, 76 |
| abstract_inverted_index.results | 146 |
| abstract_inverted_index.schemes | 36 |
| abstract_inverted_index.systems | 78, 160 |
| abstract_inverted_index.Finally, | 134 |
| abstract_inverted_index.approach | 157 |
| abstract_inverted_index.benefits | 51 |
| abstract_inverted_index.circuits | 22 |
| abstract_inverted_index.enabling | 192 |
| abstract_inverted_index.estimate | 81 |
| abstract_inverted_index.explicit | 100, 174 |
| abstract_inverted_index.hardware | 188 |
| abstract_inverted_index.premium. | 63 |
| abstract_inverted_index.problems | 161 |
| abstract_inverted_index.proposed | 5 |
| abstract_inverted_index.question | 148 |
| abstract_inverted_index.relevant | 104 |
| abstract_inverted_index.resource | 71, 208 |
| abstract_inverted_index.sampling | 90, 167 |
| abstract_inverted_index.validity | 142 |
| abstract_inverted_index.combining | 89 |
| abstract_inverted_index.efficient | 187 |
| abstract_inverted_index.expansion | 132 |
| abstract_inverted_index.numerical | 137 |
| abstract_inverted_index.proposals | 185 |
| abstract_inverted_index.providing | 173 |
| abstract_inverted_index.shallower | 21 |
| abstract_inverted_index.Randomized | 0 |
| abstract_inverted_index.algorithms | 2, 197 |
| abstract_inverted_index.analytical | 145 |
| abstract_inverted_index.asymptotic | 201 |
| abstract_inverted_index.complexity | 168 |
| abstract_inverted_index.encodings. | 28 |
| abstract_inverted_index.end-to-end | 70 |
| abstract_inverted_index.overheads. | 209 |
| abstract_inverted_index.parameters | 106 |
| abstract_inverted_index.properties | 83 |
| abstract_inverted_index.randomized | 35, 75, 154 |
| abstract_inverted_index.simulation | 11 |
| abstract_inverted_index.speculated | 46 |
| abstract_inverted_index.Hamiltonian | 96, 118 |
| abstract_inverted_index.algorithmic | 31, 105, 115, 184 |
| abstract_inverted_index.alternative | 196 |
| abstract_inverted_index.comparisons | 194 |
| abstract_inverted_index.investigate | 68 |
| abstract_inverted_index.simulation. | 97 |
| abstract_inverted_index.simulation: | 119 |
| abstract_inverted_index.suboptimal, | 42 |
| abstract_inverted_index.theoretical | 183 |
| abstract_inverted_index.complexities | 32, 202 |
| abstract_inverted_index.constructing | 20 |
| abstract_inverted_index.practicality | 151 |
| abstract_inverted_index.requirements | 72 |
| abstract_inverted_index.series-based | 156 |
| abstract_inverted_index.approximation | 125 |
| abstract_inverted_index.demonstrations | 138 |
| abstract_inverted_index.exponentially. | 171 |
| abstract_inverted_index.fault-tolerant | 55 |
| abstract_inverted_index.implementations | 189 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |