Artificial Intelligence algorithm for real-time detection and counting ofTrypanosoma cruziparasites using smartphone microscopy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.03.03.25323227
Chagas disease affects 6–7 million people worldwide and causes approximately 12,000 deaths annually. Diagnostic methods vary by disease stage, with serological tests commonly used in the chronic phase, while microscopy and molecular techniques like PCR and LAMP are employed in the acute phase. While microscopy remains the most accessible tool in resource constrained settings, its effectiveness depends on skilled personnel, creating diagnostic bottlenecks. To overcome these limitations, we developed a portable, smartphone-integrated AI system for real-time Trypanosoma cruzi detection in microscopy images. The platform combines a 3D-printed microscope adapter which aligns the smartphone camera with microscope ocular to digitize images, telemedicine-enabled annotation workflows, and lightweight AI models (SSD-MobileNetV2, YOLOv8) deployed on smartphone for real-time analysis. Trained on a diverse dataset of human samples (478 images from 20 samples), including thick/thin blood smears and cerebrospinal fluid) and murine thin smears (570 images from 33 samples), the SSD-MobileNetV2 model achieved 86% precision, 87% recall, and 86.5% F1-score on human samples, demonstrating robust performance across variable imaging conditions. This system enables rapid, accurate parasite detection in field settings without advanced infrastructure, addressing critical gaps in early diagnosis and monitoring. Its modular design allows adaptation to other pathogens and cellular structures, offering a scalable solution for neglected tropical disease diagnostics. By bridging AI innovation with microscopy, this approach holds promise for advancing equitable healthcare delivery in endemic regions and aligning with global health priorities. Author Summary Chagas disease is a life-threatening illness affecting millions, primarily in Latin America, where access to advanced laboratory equipment and trained specialists is limited. One method of diagnosis is microscopic examination of blood or cerebrospinal fluid samples, it provides immediate results without requiring complex facilities, but its effectiveness depends on the expertise of trained microscopists. We developed a simple, low-cost tool that combines a smartphone, a light microscope, and artificial intelligence (AI) to assist the diagnosis. By attaching a smartphone to a microscope with a 3D-printed adapter, users analyze microscopy images with real-time AI assistance, detecting the parasites causing Chagas disease. Our results show that this approach is accurate and could be useful for regions with limited healthcare infrastructure. It reduces reliance on specialized training and expensive equipment, helping communities diagnose Chagas faster. Beyond Chagas, this approach can be adapted to detect other diseases, offering a versatile tool for fighting neglected tropical illnesses. By bridging gaps in healthcare access, we hope to empower frontline workers and contribute to global efforts to reduce the burden of these diseases on vulnerable populations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.03.03.25323227
- OA Status
- green
- Cited By
- 1
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408248587
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408248587Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.03.03.25323227Digital Object Identifier
- Title
-
Artificial Intelligence algorithm for real-time detection and counting ofTrypanosoma cruziparasites using smartphone microscopyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Lin Lin, A. Solano, Fabiola Gonzales, Mary Cruz Torrico, Daniel Illanes, Nuria Díez, David Bermejo-Peláez, Elena Dacal, Ramón Vallés-López, Luis Pastor, Roberto Mancebo-Martín, María J. Ledesma‐Carbayo, Miguel Luengo-Oroz, José Miguel Rubio, María Flóres-ChávezList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.03.03.25323227Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.03.03.25323227Direct OA link when available
- Concepts
-
Computer science, Chagas disease, Artificial intelligence, Workflow, Microscopy, Scalability, Telepathology, Microscope, Real-time computing, Computer vision, Telemedicine, Medicine, Pathology, Health care, Database, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408248587 |
|---|---|
| doi | https://doi.org/10.1101/2025.03.03.25323227 |
| ids.doi | https://doi.org/10.1101/2025.03.03.25323227 |
| ids.openalex | https://openalex.org/W4408248587 |
| fwci | 6.47427621 |
| type | preprint |
| title | Artificial Intelligence algorithm for real-time detection and counting ofTrypanosoma cruziparasites using smartphone microscopy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10166 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Mosquito-borne diseases and control |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T11702 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9506000280380249 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2725 |
| topics[2].subfield.display_name | Infectious Diseases |
| topics[2].display_name | Parasitic Diseases Research and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5896803736686707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C112418997 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5740475654602051 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q649558 |
| concepts[1].display_name | Chagas disease |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5355916023254395 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4412786662578583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C147080431 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4331371486186981 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[4].display_name | Microscopy |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4288952946662903 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C91803115 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4229491353034973 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6140603 |
| concepts[6].display_name | Telepathology |
| concepts[7].id | https://openalex.org/C67649825 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42166462540626526 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q196538 |
| concepts[7].display_name | Microscope |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3523157835006714 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33127734065055847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C2779891985 |
| concepts[10].level | 3 |
| concepts[10].score | 0.2870718836784363 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q46994 |
| concepts[10].display_name | Telemedicine |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2850237786769867 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2688979506492615 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C160735492 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1971425712108612 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[13].display_name | Health care |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.13436031341552734 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5896803736686707 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/chagas-disease |
| keywords[1].score | 0.5740475654602051 |
| keywords[1].display_name | Chagas disease |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5355916023254395 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.4412786662578583 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/microscopy |
| keywords[4].score | 0.4331371486186981 |
| keywords[4].display_name | Microscopy |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.4288952946662903 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/telepathology |
| keywords[6].score | 0.4229491353034973 |
| keywords[6].display_name | Telepathology |
| keywords[7].id | https://openalex.org/keywords/microscope |
| keywords[7].score | 0.42166462540626526 |
| keywords[7].display_name | Microscope |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.3523157835006714 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.33127734065055847 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/telemedicine |
| keywords[10].score | 0.2870718836784363 |
| keywords[10].display_name | Telemedicine |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.2850237786769867 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.2688979506492615 |
| keywords[12].display_name | Pathology |
| keywords[13].id | https://openalex.org/keywords/health-care |
| keywords[13].score | 0.1971425712108612 |
| keywords[13].display_name | Health care |
| keywords[14].id | https://openalex.org/keywords/database |
| keywords[14].score | 0.13436031341552734 |
| keywords[14].display_name | Database |
| language | en |
| locations[0].id | doi:10.1101/2025.03.03.25323227 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.03.03.25323227 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100342078 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3397-6002 |
| authorships[0].author.display_name | Lin Lin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin Lin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113724517 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A. Solano |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ana Valeria Solano |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051667632 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fabiola Gonzales |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fabiola Gonzales |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074576724 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5478-4881 |
| authorships[3].author.display_name | Mary Cruz Torrico |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mary Cruz Torrico |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057213583 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Daniel Illanes |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Daniel Illanes |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053407663 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Nuria Díez |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nuria Díez |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5084591920 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0181-3957 |
| authorships[6].author.display_name | David Bermejo-Peláez |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | David Bermejo-Peláez |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5020546925 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4599-0370 |
| authorships[7].author.display_name | Elena Dacal |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Elena Dacal |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5093026710 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Ramón Vallés-López |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ramón Vallés-López |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5059219568 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-7900-7509 |
| authorships[9].author.display_name | Luis Pastor |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lucia Pastor |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5094045687 |
| authorships[10].author.orcid | https://orcid.org/0009-0004-8032-9371 |
| authorships[10].author.display_name | Roberto Mancebo-Martín |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Roberto Mancebo-Martín |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5012910949 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-6846-3923 |
| authorships[11].author.display_name | María J. Ledesma‐Carbayo |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | María Jesús Ledesma-Carbayo |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5032302239 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-8694-2001 |
| authorships[12].author.display_name | Miguel Luengo-Oroz |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Miguel Luengo-Oroz |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5015110699 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-1903-6711 |
| authorships[13].author.display_name | José Miguel Rubio |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Jose M. Rubio |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5052281496 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-2597-3100 |
| authorships[14].author.display_name | María Flóres-Chávez |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Maria Flores-Chavez |
| authorships[14].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.03.03.25323227 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-08T00:00:00 |
| display_name | Artificial Intelligence algorithm for real-time detection and counting ofTrypanosoma cruziparasites using smartphone microscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10166 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Mosquito-borne diseases and control |
| related_works | https://openalex.org/W2026751847, https://openalex.org/W2068735235, https://openalex.org/W2426138213, https://openalex.org/W2413880198, https://openalex.org/W1945212235, https://openalex.org/W2413851873, https://openalex.org/W2410748795, https://openalex.org/W2811150765, https://openalex.org/W2094924506, https://openalex.org/W166814665 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.03.03.25323227 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.03.03.25323227 |
| primary_location.id | doi:10.1101/2025.03.03.25323227 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.03.03.25323227 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W632809972, https://openalex.org/W4393259786, https://openalex.org/W3212240231, https://openalex.org/W4403026242, https://openalex.org/W4401418123, https://openalex.org/W4399858536, https://openalex.org/W4286270981, https://openalex.org/W4378071744, https://openalex.org/W4379508603, https://openalex.org/W3012214809, https://openalex.org/W3121368818, https://openalex.org/W3086667591, https://openalex.org/W4398201291, https://openalex.org/W4400889241, https://openalex.org/W4388802634, https://openalex.org/W4313704016, https://openalex.org/W4399202606, https://openalex.org/W4388010947, https://openalex.org/W4223537630, https://openalex.org/W4399509051, https://openalex.org/W3131093237, https://openalex.org/W4224302708, https://openalex.org/W2749843705, https://openalex.org/W4220970273, https://openalex.org/W4311956188, https://openalex.org/W4394728138, https://openalex.org/W4283070098, https://openalex.org/W3197182202, https://openalex.org/W4394872759, https://openalex.org/W4281715409, https://openalex.org/W3049277359, https://openalex.org/W4200194562, https://openalex.org/W2056299158, https://openalex.org/W1972139073, https://openalex.org/W3128992737, https://openalex.org/W3012453708, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W2176496563, https://openalex.org/W4380666786, https://openalex.org/W4292649135, https://openalex.org/W4377966413 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 70, 86, 118, 199, 236, 289, 295, 297, 310, 313, 316, 377 |
| abstract_inverted_index.20 | 127 |
| abstract_inverted_index.33 | 143 |
| abstract_inverted_index.AI | 73, 106, 209, 325 |
| abstract_inverted_index.By | 207, 308, 385 |
| abstract_inverted_index.It | 351 |
| abstract_inverted_index.To | 64 |
| abstract_inverted_index.We | 287 |
| abstract_inverted_index.be | 343, 370 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 25, 40, 51, 80, 173, 182, 222, 242, 388 |
| abstract_inverted_index.is | 235, 254, 260, 339 |
| abstract_inverted_index.it | 269 |
| abstract_inverted_index.of | 121, 258, 263, 284, 406 |
| abstract_inverted_index.on | 58, 111, 117, 156, 281, 354, 409 |
| abstract_inverted_index.or | 265 |
| abstract_inverted_index.to | 98, 192, 247, 304, 312, 372, 393, 399, 402 |
| abstract_inverted_index.we | 68, 391 |
| abstract_inverted_index.86% | 149 |
| abstract_inverted_index.87% | 151 |
| abstract_inverted_index.Its | 187 |
| abstract_inverted_index.One | 256 |
| abstract_inverted_index.Our | 333 |
| abstract_inverted_index.PCR | 35 |
| abstract_inverted_index.The | 83 |
| abstract_inverted_index.and | 8, 31, 36, 104, 133, 136, 153, 185, 195, 225, 251, 300, 341, 357, 397 |
| abstract_inverted_index.are | 38 |
| abstract_inverted_index.but | 277 |
| abstract_inverted_index.can | 369 |
| abstract_inverted_index.for | 75, 113, 202, 217, 345, 380 |
| abstract_inverted_index.its | 55, 278 |
| abstract_inverted_index.the | 26, 41, 47, 92, 145, 282, 306, 328, 404 |
| abstract_inverted_index.(478 | 124 |
| abstract_inverted_index.(570 | 140 |
| abstract_inverted_index.(AI) | 303 |
| abstract_inverted_index.LAMP | 37 |
| abstract_inverted_index.This | 166 |
| abstract_inverted_index.from | 126, 142 |
| abstract_inverted_index.gaps | 181, 387 |
| abstract_inverted_index.hope | 392 |
| abstract_inverted_index.like | 34 |
| abstract_inverted_index.most | 48 |
| abstract_inverted_index.show | 335 |
| abstract_inverted_index.that | 293, 336 |
| abstract_inverted_index.thin | 138 |
| abstract_inverted_index.this | 213, 337, 367 |
| abstract_inverted_index.tool | 50, 292, 379 |
| abstract_inverted_index.used | 24 |
| abstract_inverted_index.vary | 16 |
| abstract_inverted_index.with | 20, 95, 211, 227, 315, 323, 347 |
| abstract_inverted_index.6–7 | 4 |
| abstract_inverted_index.86.5% | 154 |
| abstract_inverted_index.Latin | 243 |
| abstract_inverted_index.While | 44 |
| abstract_inverted_index.acute | 42 |
| abstract_inverted_index.blood | 131, 264 |
| abstract_inverted_index.could | 342 |
| abstract_inverted_index.cruzi | 78 |
| abstract_inverted_index.early | 183 |
| abstract_inverted_index.field | 174 |
| abstract_inverted_index.fluid | 267 |
| abstract_inverted_index.holds | 215 |
| abstract_inverted_index.human | 122, 157 |
| abstract_inverted_index.light | 298 |
| abstract_inverted_index.model | 147 |
| abstract_inverted_index.other | 193, 374 |
| abstract_inverted_index.tests | 22 |
| abstract_inverted_index.these | 66, 407 |
| abstract_inverted_index.users | 319 |
| abstract_inverted_index.where | 245 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.while | 29 |
| abstract_inverted_index.12,000 | 11 |
| abstract_inverted_index.Author | 231 |
| abstract_inverted_index.Beyond | 365 |
| abstract_inverted_index.Chagas | 1, 233, 331, 363 |
| abstract_inverted_index.access | 246 |
| abstract_inverted_index.across | 162 |
| abstract_inverted_index.aligns | 91 |
| abstract_inverted_index.allows | 190 |
| abstract_inverted_index.assist | 305 |
| abstract_inverted_index.burden | 405 |
| abstract_inverted_index.camera | 94 |
| abstract_inverted_index.causes | 9 |
| abstract_inverted_index.deaths | 12 |
| abstract_inverted_index.design | 189 |
| abstract_inverted_index.detect | 373 |
| abstract_inverted_index.fluid) | 135 |
| abstract_inverted_index.global | 228, 400 |
| abstract_inverted_index.health | 229 |
| abstract_inverted_index.images | 125, 141, 322 |
| abstract_inverted_index.method | 257 |
| abstract_inverted_index.models | 107 |
| abstract_inverted_index.murine | 137 |
| abstract_inverted_index.ocular | 97 |
| abstract_inverted_index.people | 6 |
| abstract_inverted_index.phase, | 28 |
| abstract_inverted_index.phase. | 43 |
| abstract_inverted_index.rapid, | 169 |
| abstract_inverted_index.reduce | 403 |
| abstract_inverted_index.robust | 160 |
| abstract_inverted_index.smears | 132, 139 |
| abstract_inverted_index.stage, | 19 |
| abstract_inverted_index.system | 74, 167 |
| abstract_inverted_index.useful | 344 |
| abstract_inverted_index.Chagas, | 366 |
| abstract_inverted_index.Summary | 232 |
| abstract_inverted_index.Trained | 116 |
| abstract_inverted_index.YOLOv8) | 109 |
| abstract_inverted_index.access, | 390 |
| abstract_inverted_index.adapted | 371 |
| abstract_inverted_index.adapter | 89 |
| abstract_inverted_index.affects | 3 |
| abstract_inverted_index.analyze | 320 |
| abstract_inverted_index.causing | 330 |
| abstract_inverted_index.chronic | 27 |
| abstract_inverted_index.complex | 275 |
| abstract_inverted_index.dataset | 120 |
| abstract_inverted_index.depends | 57, 280 |
| abstract_inverted_index.disease | 2, 18, 205, 234 |
| abstract_inverted_index.diverse | 119 |
| abstract_inverted_index.efforts | 401 |
| abstract_inverted_index.empower | 394 |
| abstract_inverted_index.enables | 168 |
| abstract_inverted_index.endemic | 223 |
| abstract_inverted_index.faster. | 364 |
| abstract_inverted_index.helping | 360 |
| abstract_inverted_index.illness | 238 |
| abstract_inverted_index.images, | 100 |
| abstract_inverted_index.images. | 82 |
| abstract_inverted_index.imaging | 164 |
| abstract_inverted_index.limited | 348 |
| abstract_inverted_index.methods | 15 |
| abstract_inverted_index.million | 5 |
| abstract_inverted_index.modular | 188 |
| abstract_inverted_index.promise | 216 |
| abstract_inverted_index.recall, | 152 |
| abstract_inverted_index.reduces | 352 |
| abstract_inverted_index.regions | 224, 346 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.results | 272, 334 |
| abstract_inverted_index.samples | 123 |
| abstract_inverted_index.simple, | 290 |
| abstract_inverted_index.skilled | 59 |
| abstract_inverted_index.trained | 252, 285 |
| abstract_inverted_index.without | 176, 273 |
| abstract_inverted_index.workers | 396 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.America, | 244 |
| abstract_inverted_index.F1-score | 155 |
| abstract_inverted_index.accurate | 170, 340 |
| abstract_inverted_index.achieved | 148 |
| abstract_inverted_index.adapter, | 318 |
| abstract_inverted_index.advanced | 177, 248 |
| abstract_inverted_index.aligning | 226 |
| abstract_inverted_index.approach | 214, 338, 368 |
| abstract_inverted_index.bridging | 208, 386 |
| abstract_inverted_index.cellular | 196 |
| abstract_inverted_index.combines | 85, 294 |
| abstract_inverted_index.commonly | 23 |
| abstract_inverted_index.creating | 61 |
| abstract_inverted_index.critical | 180 |
| abstract_inverted_index.delivery | 221 |
| abstract_inverted_index.deployed | 110 |
| abstract_inverted_index.diagnose | 362 |
| abstract_inverted_index.digitize | 99 |
| abstract_inverted_index.disease. | 332 |
| abstract_inverted_index.diseases | 408 |
| abstract_inverted_index.employed | 39 |
| abstract_inverted_index.fighting | 381 |
| abstract_inverted_index.limited. | 255 |
| abstract_inverted_index.low-cost | 291 |
| abstract_inverted_index.offering | 198, 376 |
| abstract_inverted_index.overcome | 65 |
| abstract_inverted_index.parasite | 171 |
| abstract_inverted_index.platform | 84 |
| abstract_inverted_index.provides | 270 |
| abstract_inverted_index.reliance | 353 |
| abstract_inverted_index.resource | 52 |
| abstract_inverted_index.samples, | 158, 268 |
| abstract_inverted_index.scalable | 200 |
| abstract_inverted_index.settings | 175 |
| abstract_inverted_index.solution | 201 |
| abstract_inverted_index.training | 356 |
| abstract_inverted_index.tropical | 204, 383 |
| abstract_inverted_index.variable | 163 |
| abstract_inverted_index.advancing | 218 |
| abstract_inverted_index.affecting | 239 |
| abstract_inverted_index.analysis. | 115 |
| abstract_inverted_index.annually. | 13 |
| abstract_inverted_index.attaching | 309 |
| abstract_inverted_index.detecting | 327 |
| abstract_inverted_index.detection | 79, 172 |
| abstract_inverted_index.developed | 69, 288 |
| abstract_inverted_index.diagnosis | 184, 259 |
| abstract_inverted_index.diseases, | 375 |
| abstract_inverted_index.equipment | 250 |
| abstract_inverted_index.equitable | 219 |
| abstract_inverted_index.expensive | 358 |
| abstract_inverted_index.expertise | 283 |
| abstract_inverted_index.frontline | 395 |
| abstract_inverted_index.immediate | 271 |
| abstract_inverted_index.including | 129 |
| abstract_inverted_index.millions, | 240 |
| abstract_inverted_index.molecular | 32 |
| abstract_inverted_index.neglected | 203, 382 |
| abstract_inverted_index.parasites | 329 |
| abstract_inverted_index.pathogens | 194 |
| abstract_inverted_index.portable, | 71 |
| abstract_inverted_index.primarily | 241 |
| abstract_inverted_index.real-time | 76, 114, 324 |
| abstract_inverted_index.requiring | 274 |
| abstract_inverted_index.samples), | 128, 144 |
| abstract_inverted_index.settings, | 54 |
| abstract_inverted_index.versatile | 378 |
| abstract_inverted_index.worldwide | 7 |
| abstract_inverted_index.3D-printed | 87, 317 |
| abstract_inverted_index.Diagnostic | 14 |
| abstract_inverted_index.accessible | 49 |
| abstract_inverted_index.adaptation | 191 |
| abstract_inverted_index.addressing | 179 |
| abstract_inverted_index.annotation | 102 |
| abstract_inverted_index.artificial | 301 |
| abstract_inverted_index.contribute | 398 |
| abstract_inverted_index.diagnosis. | 307 |
| abstract_inverted_index.diagnostic | 62 |
| abstract_inverted_index.equipment, | 359 |
| abstract_inverted_index.healthcare | 220, 349, 389 |
| abstract_inverted_index.illnesses. | 384 |
| abstract_inverted_index.innovation | 210 |
| abstract_inverted_index.laboratory | 249 |
| abstract_inverted_index.microscope | 88, 96, 314 |
| abstract_inverted_index.microscopy | 30, 45, 81, 321 |
| abstract_inverted_index.personnel, | 60 |
| abstract_inverted_index.precision, | 150 |
| abstract_inverted_index.smartphone | 93, 112, 311 |
| abstract_inverted_index.techniques | 33 |
| abstract_inverted_index.thick/thin | 130 |
| abstract_inverted_index.vulnerable | 410 |
| abstract_inverted_index.workflows, | 103 |
| abstract_inverted_index.Trypanosoma | 77 |
| abstract_inverted_index.assistance, | 326 |
| abstract_inverted_index.communities | 361 |
| abstract_inverted_index.conditions. | 165 |
| abstract_inverted_index.constrained | 53 |
| abstract_inverted_index.examination | 262 |
| abstract_inverted_index.facilities, | 276 |
| abstract_inverted_index.lightweight | 105 |
| abstract_inverted_index.microscope, | 299 |
| abstract_inverted_index.microscopic | 261 |
| abstract_inverted_index.microscopy, | 212 |
| abstract_inverted_index.monitoring. | 186 |
| abstract_inverted_index.performance | 161 |
| abstract_inverted_index.priorities. | 230 |
| abstract_inverted_index.serological | 21 |
| abstract_inverted_index.smartphone, | 296 |
| abstract_inverted_index.specialists | 253 |
| abstract_inverted_index.specialized | 355 |
| abstract_inverted_index.structures, | 197 |
| abstract_inverted_index.bottlenecks. | 63 |
| abstract_inverted_index.diagnostics. | 206 |
| abstract_inverted_index.intelligence | 302 |
| abstract_inverted_index.limitations, | 67 |
| abstract_inverted_index.populations. | 411 |
| abstract_inverted_index.approximately | 10 |
| abstract_inverted_index.cerebrospinal | 134, 266 |
| abstract_inverted_index.demonstrating | 159 |
| abstract_inverted_index.effectiveness | 56, 279 |
| abstract_inverted_index.microscopists. | 286 |
| abstract_inverted_index.SSD-MobileNetV2 | 146 |
| abstract_inverted_index.infrastructure, | 178 |
| abstract_inverted_index.infrastructure. | 350 |
| abstract_inverted_index.life-threatening | 237 |
| abstract_inverted_index.(SSD-MobileNetV2, | 108 |
| abstract_inverted_index.telemedicine-enabled | 101 |
| abstract_inverted_index.smartphone-integrated | 72 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 15 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.8681903 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |