Artificial Intelligence and Computational Approaches for Epilepsy Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.14581/jer.20003
Studies on treatment of epilepsy have been actively conducted in multiple avenues, but there are limitations in improving its efficacy due to between-subject variability in which treatment outcomes vary from patient to patient. Accordingly, there is a growing interest in precision medicine that provides accurate diagnosis for seizure types and optimal treatment for an individual epilepsy patient. Among these approaches, computational studies making this feasible are rapidly progressing in particular and have been widely applied in epilepsy. These computational studies are being conducted in two main streams: 1) artificial intelligence-based studies implementing computational machines with specific functions, such as automatic diagnosis and prognosis prediction for an individual patient, using machine learning techniques based on large amounts of data obtained from multiple patients and 2) patient-specific modeling-based studies implementing biophysical in-silico platforms to understand pathological mechanisms and derive the optimal treatment for each patient by reproducing the brain network dynamics of the particular patient per se based on individual patient's data. These computational approaches are important as it can integrate multiple types of data acquired from patients and analysis results into a single platform. If these kinds of methods are efficiently operated, it would suggest a novel paradigm for precision medicine.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.14581/jer.20003
- https://www.j-epilepsy.org/upload/jer-20003.pdf
- OA Status
- diamond
- Cited By
- 64
- References
- 100
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3084044008
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3084044008Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14581/jer.20003Digital Object Identifier
- Title
-
Artificial Intelligence and Computational Approaches for EpilepsyWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-30Full publication date if available
- Authors
-
Sora An, Chaewon Kang, Hyang Woon LeeList of authors in order
- Landing page
-
https://doi.org/10.14581/jer.20003Publisher landing page
- PDF URL
-
https://www.j-epilepsy.org/upload/jer-20003.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.j-epilepsy.org/upload/jer-20003.pdfDirect OA link when available
- Concepts
-
Epilepsy, Artificial intelligence, Computational model, Machine learning, Computer science, Computational intelligence, Precision medicine, Patient data, Medicine, Pathology, Psychiatry, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
64Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 19, 2023: 11, 2022: 11, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
100Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3084044008 |
|---|---|
| doi | https://doi.org/10.14581/jer.20003 |
| ids.doi | https://doi.org/10.14581/jer.20003 |
| ids.mag | 3084044008 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32983950 |
| ids.openalex | https://openalex.org/W3084044008 |
| fwci | 5.81122982 |
| type | review |
| title | Artificial Intelligence and Computational Approaches for Epilepsy |
| awards[0].id | https://openalex.org/G2627958635 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2017R1B5A2086553 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| awards[1].id | https://openalex.org/G8803147084 |
| awards[1].funder_id | https://openalex.org/F4320322120 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2017R1A2A2A050696 |
| awards[1].funder_display_name | National Research Foundation of Korea |
| awards[2].id | https://openalex.org/G3905826432 |
| awards[2].funder_id | https://openalex.org/F4320322120 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2020R1I1A1A01073605 |
| awards[2].funder_display_name | National Research Foundation of Korea |
| awards[3].id | https://openalex.org/G6533392565 |
| awards[3].funder_id | https://openalex.org/F4320322120 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2019M3C1B8090803 |
| awards[3].funder_display_name | National Research Foundation of Korea |
| awards[4].id | https://openalex.org/G5321060196 |
| awards[4].funder_id | https://openalex.org/F4320322120 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2020R1A2C2013216 |
| awards[4].funder_display_name | National Research Foundation of Korea |
| awards[5].id | https://openalex.org/G693737613 |
| awards[5].funder_id | https://openalex.org/F4320322120 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2018M3C1B8016147 |
| awards[5].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 1 |
| biblio.volume | 10 |
| biblio.last_page | 17 |
| biblio.first_page | 8 |
| topics[0].id | https://openalex.org/T10094 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2738 |
| topics[0].subfield.display_name | Psychiatry and Mental health |
| topics[0].display_name | Epilepsy research and treatment |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9907000064849854 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9868000149726868 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| funders[0].id | https://openalex.org/F4320321408 |
| funders[0].ror | https://ror.org/01p262204 |
| funders[0].display_name | Ministry of Education |
| funders[1].id | https://openalex.org/F4320322120 |
| funders[1].ror | https://ror.org/013aysd81 |
| funders[1].display_name | National Research Foundation of Korea |
| funders[2].id | https://openalex.org/F4320322347 |
| funders[2].ror | https://ror.org/032e49973 |
| funders[2].display_name | Ministry of Science ICT and Future Planning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778186239 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7867732644081116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q41571 |
| concepts[0].display_name | Epilepsy |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6104938387870789 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C66024118 |
| concepts[2].level | 2 |
| concepts[2].score | 0.540591835975647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1122506 |
| concepts[2].display_name | Computational model |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5404028296470642 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5270331501960754 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C139502532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5195825099945068 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[5].display_name | Computational intelligence |
| concepts[6].id | https://openalex.org/C163763905 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4705139696598053 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17075943 |
| concepts[6].display_name | Precision medicine |
| concepts[7].id | https://openalex.org/C3018822202 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45050597190856934 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[7].display_name | Patient data |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.42816826701164246 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13314199447631836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C118552586 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10073140263557434 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[10].display_name | Psychiatry |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/epilepsy |
| keywords[0].score | 0.7867732644081116 |
| keywords[0].display_name | Epilepsy |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6104938387870789 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computational-model |
| keywords[2].score | 0.540591835975647 |
| keywords[2].display_name | Computational model |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5404028296470642 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5270331501960754 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computational-intelligence |
| keywords[5].score | 0.5195825099945068 |
| keywords[5].display_name | Computational intelligence |
| keywords[6].id | https://openalex.org/keywords/precision-medicine |
| keywords[6].score | 0.4705139696598053 |
| keywords[6].display_name | Precision medicine |
| keywords[7].id | https://openalex.org/keywords/patient-data |
| keywords[7].score | 0.45050597190856934 |
| keywords[7].display_name | Patient data |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.42816826701164246 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.13314199447631836 |
| keywords[9].display_name | Pathology |
| keywords[10].id | https://openalex.org/keywords/psychiatry |
| keywords[10].score | 0.10073140263557434 |
| keywords[10].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.14581/jer.20003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764631002 |
| locations[0].source.issn | 2233-6249, 2233-6257 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2233-6249 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Epilepsy Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.j-epilepsy.org/upload/jer-20003.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Epilepsy Research |
| locations[0].landing_page_url | https://doi.org/10.14581/jer.20003 |
| locations[1].id | pmid:32983950 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of epilepsy research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32983950 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:7494883 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Epilepsy Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7494883 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5035721126 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sora An |
| authorships[0].affiliations[0].raw_affiliation_string | Medical Science, and |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sora An |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Medical Science, and |
| authorships[1].author.id | https://openalex.org/A5088656417 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chaewon Kang |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210132203 |
| authorships[1].affiliations[0].raw_affiliation_string | Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210132203 |
| authorships[1].institutions[0].ror | https://ror.org/03exgrk66 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210132203 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Ewha Womans University Medical Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chaewon Kang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea |
| authorships[2].author.id | https://openalex.org/A5071828241 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0610-085X |
| authorships[2].author.display_name | Hyang Woon Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210132203 |
| authorships[2].affiliations[0].raw_affiliation_string | Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea |
| authorships[2].affiliations[1].raw_affiliation_string | Medical Science, and |
| authorships[2].institutions[0].id | https://openalex.org/I4210132203 |
| authorships[2].institutions[0].ror | https://ror.org/03exgrk66 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210132203 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Ewha Womans University Medical Center |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hyang Woon Lee |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea, Medical Science, and |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.j-epilepsy.org/upload/jer-20003.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial Intelligence and Computational Approaches for Epilepsy |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10094 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2738 |
| primary_topic.subfield.display_name | Psychiatry and Mental health |
| primary_topic.display_name | Epilepsy research and treatment |
| related_works | https://openalex.org/W2395385109, https://openalex.org/W2773633178, https://openalex.org/W2080101436, https://openalex.org/W2802335767, https://openalex.org/W4388090985, https://openalex.org/W2356350882, https://openalex.org/W1545074592, https://openalex.org/W2275559830, https://openalex.org/W2378302565, https://openalex.org/W3094209195 |
| cited_by_count | 64 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.14581/jer.20003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764631002 |
| best_oa_location.source.issn | 2233-6249, 2233-6257 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2233-6249 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Epilepsy Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.j-epilepsy.org/upload/jer-20003.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Epilepsy Research |
| best_oa_location.landing_page_url | https://doi.org/10.14581/jer.20003 |
| primary_location.id | doi:10.14581/jer.20003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764631002 |
| primary_location.source.issn | 2233-6249, 2233-6257 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2233-6249 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Epilepsy Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.j-epilepsy.org/upload/jer-20003.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Epilepsy Research |
| primary_location.landing_page_url | https://doi.org/10.14581/jer.20003 |
| publication_date | 2020-06-30 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2911226018, https://openalex.org/W2099169745, https://openalex.org/W2795805828, https://openalex.org/W2177362284, https://openalex.org/W1600791815, https://openalex.org/W2532762851, https://openalex.org/W1984264616, https://openalex.org/W2090276138, https://openalex.org/W2778944575, https://openalex.org/W1991623258, https://openalex.org/W1222842547, https://openalex.org/W1928622425, https://openalex.org/W2140550257, https://openalex.org/W2080291910, https://openalex.org/W1968288733, https://openalex.org/W1986744150, https://openalex.org/W2792435683, https://openalex.org/W2774039434, https://openalex.org/W2792360410, https://openalex.org/W2916220522, https://openalex.org/W2891536546, https://openalex.org/W2943554691, https://openalex.org/W2609983138, https://openalex.org/W2619442005, https://openalex.org/W2900970314, https://openalex.org/W2534435538, https://openalex.org/W2793948321, https://openalex.org/W2104098179, https://openalex.org/W4235907943, https://openalex.org/W2971893337, https://openalex.org/W2895763047, https://openalex.org/W2969412643, https://openalex.org/W2496897087, https://openalex.org/W2978368159, https://openalex.org/W2905810301, https://openalex.org/W2948224565, https://openalex.org/W3014186485, https://openalex.org/W2980073248, https://openalex.org/W2899443240, https://openalex.org/W2095068684, https://openalex.org/W1976570050, https://openalex.org/W3030425771, https://openalex.org/W2736471100, https://openalex.org/W2774781962, https://openalex.org/W2785402779, https://openalex.org/W3004227146, https://openalex.org/W2805061797, https://openalex.org/W2885962237, https://openalex.org/W2774451098, https://openalex.org/W1973525977, https://openalex.org/W2073223058, https://openalex.org/W2617938108, https://openalex.org/W2749957338, https://openalex.org/W2914314600, https://openalex.org/W2904559787, https://openalex.org/W2901730235, https://openalex.org/W2999144125, https://openalex.org/W2915918643, https://openalex.org/W2155390087, https://openalex.org/W2057127352, https://openalex.org/W1566689562, https://openalex.org/W2291197622, https://openalex.org/W2758802379, https://openalex.org/W2620900554, https://openalex.org/W2004306263, https://openalex.org/W2070097681, https://openalex.org/W2979410901, https://openalex.org/W2799610518, https://openalex.org/W2780723646, https://openalex.org/W2804824909, https://openalex.org/W2962984603, https://openalex.org/W2901504266, https://openalex.org/W2120853742, https://openalex.org/W2774975003, https://openalex.org/W2001043884, https://openalex.org/W2080929714, https://openalex.org/W2000690216, https://openalex.org/W2466791758, https://openalex.org/W2145749918, https://openalex.org/W2074725578, https://openalex.org/W2782651632, https://openalex.org/W2765934142, https://openalex.org/W2086242056, https://openalex.org/W3019748635, https://openalex.org/W2473219140, https://openalex.org/W2563406483, https://openalex.org/W2195355925, https://openalex.org/W2483809583, https://openalex.org/W2622514185, https://openalex.org/W2797692459, https://openalex.org/W2955067947, https://openalex.org/W3023066206, https://openalex.org/W2052394872, https://openalex.org/W1987594947, https://openalex.org/W4388844646, https://openalex.org/W2598441763, https://openalex.org/W3013999498, https://openalex.org/W3019802718, https://openalex.org/W2999668305, https://openalex.org/W2135310007 |
| referenced_works_count | 100 |
| abstract_inverted_index.a | 36, 180, 194 |
| abstract_inverted_index.1) | 87 |
| abstract_inverted_index.2) | 123 |
| abstract_inverted_index.If | 183 |
| abstract_inverted_index.an | 53, 105 |
| abstract_inverted_index.as | 98, 165 |
| abstract_inverted_index.by | 143 |
| abstract_inverted_index.in | 9, 16, 24, 39, 68, 75, 83 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.it | 166, 191 |
| abstract_inverted_index.of | 3, 116, 149, 171, 186 |
| abstract_inverted_index.on | 1, 113, 156 |
| abstract_inverted_index.se | 154 |
| abstract_inverted_index.to | 21, 31, 131 |
| abstract_inverted_index.and | 49, 70, 101, 122, 135, 176 |
| abstract_inverted_index.are | 14, 65, 80, 163, 188 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.for | 46, 52, 104, 140, 197 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.per | 153 |
| abstract_inverted_index.the | 137, 145, 150 |
| abstract_inverted_index.two | 84 |
| abstract_inverted_index.been | 6, 72 |
| abstract_inverted_index.data | 117, 172 |
| abstract_inverted_index.each | 141 |
| abstract_inverted_index.from | 29, 119, 174 |
| abstract_inverted_index.have | 5, 71 |
| abstract_inverted_index.into | 179 |
| abstract_inverted_index.main | 85 |
| abstract_inverted_index.such | 97 |
| abstract_inverted_index.that | 42 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.vary | 28 |
| abstract_inverted_index.with | 94 |
| abstract_inverted_index.Among | 57 |
| abstract_inverted_index.These | 77, 160 |
| abstract_inverted_index.based | 112, 155 |
| abstract_inverted_index.being | 81 |
| abstract_inverted_index.brain | 146 |
| abstract_inverted_index.data. | 159 |
| abstract_inverted_index.kinds | 185 |
| abstract_inverted_index.large | 114 |
| abstract_inverted_index.novel | 195 |
| abstract_inverted_index.there | 13, 34 |
| abstract_inverted_index.these | 58, 184 |
| abstract_inverted_index.types | 48, 170 |
| abstract_inverted_index.using | 108 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.would | 192 |
| abstract_inverted_index.derive | 136 |
| abstract_inverted_index.making | 62 |
| abstract_inverted_index.single | 181 |
| abstract_inverted_index.widely | 73 |
| abstract_inverted_index.Studies | 0 |
| abstract_inverted_index.amounts | 115 |
| abstract_inverted_index.applied | 74 |
| abstract_inverted_index.growing | 37 |
| abstract_inverted_index.machine | 109 |
| abstract_inverted_index.methods | 187 |
| abstract_inverted_index.network | 147 |
| abstract_inverted_index.optimal | 50, 138 |
| abstract_inverted_index.patient | 30, 142, 152 |
| abstract_inverted_index.rapidly | 66 |
| abstract_inverted_index.results | 178 |
| abstract_inverted_index.seizure | 47 |
| abstract_inverted_index.studies | 61, 79, 90, 126 |
| abstract_inverted_index.suggest | 193 |
| abstract_inverted_index.accurate | 44 |
| abstract_inverted_index.acquired | 173 |
| abstract_inverted_index.actively | 7 |
| abstract_inverted_index.analysis | 177 |
| abstract_inverted_index.avenues, | 11 |
| abstract_inverted_index.dynamics | 148 |
| abstract_inverted_index.efficacy | 19 |
| abstract_inverted_index.epilepsy | 4, 55 |
| abstract_inverted_index.feasible | 64 |
| abstract_inverted_index.interest | 38 |
| abstract_inverted_index.learning | 110 |
| abstract_inverted_index.machines | 93 |
| abstract_inverted_index.medicine | 41 |
| abstract_inverted_index.multiple | 10, 120, 169 |
| abstract_inverted_index.obtained | 118 |
| abstract_inverted_index.outcomes | 27 |
| abstract_inverted_index.paradigm | 196 |
| abstract_inverted_index.patient, | 107 |
| abstract_inverted_index.patient. | 32, 56 |
| abstract_inverted_index.patients | 121, 175 |
| abstract_inverted_index.provides | 43 |
| abstract_inverted_index.specific | 95 |
| abstract_inverted_index.streams: | 86 |
| abstract_inverted_index.automatic | 99 |
| abstract_inverted_index.conducted | 8, 82 |
| abstract_inverted_index.diagnosis | 45, 100 |
| abstract_inverted_index.epilepsy. | 76 |
| abstract_inverted_index.important | 164 |
| abstract_inverted_index.improving | 17 |
| abstract_inverted_index.in-silico | 129 |
| abstract_inverted_index.integrate | 168 |
| abstract_inverted_index.medicine. | 199 |
| abstract_inverted_index.operated, | 190 |
| abstract_inverted_index.patient's | 158 |
| abstract_inverted_index.platform. | 182 |
| abstract_inverted_index.platforms | 130 |
| abstract_inverted_index.precision | 40, 198 |
| abstract_inverted_index.prognosis | 102 |
| abstract_inverted_index.treatment | 2, 26, 51, 139 |
| abstract_inverted_index.approaches | 162 |
| abstract_inverted_index.artificial | 88 |
| abstract_inverted_index.functions, | 96 |
| abstract_inverted_index.individual | 54, 106, 157 |
| abstract_inverted_index.mechanisms | 134 |
| abstract_inverted_index.particular | 69, 151 |
| abstract_inverted_index.prediction | 103 |
| abstract_inverted_index.techniques | 111 |
| abstract_inverted_index.understand | 132 |
| abstract_inverted_index.approaches, | 59 |
| abstract_inverted_index.biophysical | 128 |
| abstract_inverted_index.efficiently | 189 |
| abstract_inverted_index.limitations | 15 |
| abstract_inverted_index.progressing | 67 |
| abstract_inverted_index.reproducing | 144 |
| abstract_inverted_index.variability | 23 |
| abstract_inverted_index.Accordingly, | 33 |
| abstract_inverted_index.implementing | 91, 127 |
| abstract_inverted_index.pathological | 133 |
| abstract_inverted_index.computational | 60, 78, 92, 161 |
| abstract_inverted_index.modeling-based | 125 |
| abstract_inverted_index.between-subject | 22 |
| abstract_inverted_index.patient-specific | 124 |
| abstract_inverted_index.intelligence-based | 89 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5071828241 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210132203 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.95930335 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |