Artificial intelligence-based automated matching of pulmonary nodules on follow-up chest CT Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s41747-025-00579-w
Background The growing demand for follow-up imaging highlights the need for tools supporting the assessment of pulmonary nodules over time. We evaluated the performance of an artificial intelligence (AI)-based system for automated nodule matching. Methods In this single-center study, patients with nodules and ≤ 2 chest computed tomography (CT) examinations were retrospectively selected. An AI-based algorithm was used for automated nodule detection and matching. The matching rate and the causes for incorrect matching were evaluated for the ten largest lesions (5–30 mm in diameter) registered on baseline CT. The dependence of the matching rate on nodule number and localization was also analyzed. Results One hundred patients (46 females), with a median age of 62 years (interquartile range 57–69), and 253 CTs were included. Focusing on the ten largest lesions, 1,141 lesions were identified, of which 36 (3.2%) were other structures incorrectly identified as nodules (false-positives). Of the 1,105 identified nodules, 964 (87.2%) were correctly detected and matched. The matching rate for nodules registered in both baseline and follow-up scans was 97.8%. The matching rate per case ranged 80.0–100.0% (median 90.0%). Correct matching rate decreased in follow-up examinations to over 50 nodules ( p = 0.003), with an overrepresentation of missed matching. Matching rates were higher in parenchymal (91.8%), peripheral (84.4%), and juxtavascular (82.4%) nodules than in juxtaphrenic nodules (71.1%) ( p < 0.001). Missed matching was overrepresented in juxtavascular, and incorrect assignment in juxtaphrenic nodules. Conclusion The correct automated-matching rate of metastatic pulmonary nodules in follow-up examinations was high, but it depends on localization and a number of nodules. Relevance statement The algorithm enables precise follow-up matching of pulmonary nodules, potentially providing a solid basis for standardized and accurate evaluations. Understanding the algorithm’s strengths and weaknesses based on nodule localization and number enhances the interpretation of AI-based results. Key Points The AI algorithm achieved a correct nodule matching rate of 87.2% and up to 97.8% when considering nodules detected in both baseline and follow-up scans. Matching accuracy depended on nodule number and localization. This algorithm has the potential to support response evaluation criteria in solid tumor-based evaluations in clinical practice. Graphical Abstract
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s41747-025-00579-w
- https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-w
- OA Status
- gold
- Cited By
- 3
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410028416
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410028416Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s41747-025-00579-wDigital Object Identifier
- Title
-
Artificial intelligence-based automated matching of pulmonary nodules on follow-up chest CTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-02Full publication date if available
- Authors
-
Nicola Fink, Jonathan I. Sperl, Johannes Rueckel, Anna Theresa Stüber, Sophia S. Goller, Jan Rudolph, Felix Escher, Theresia Aschauer, Boj Hoppe, Jens Ricke, Bastian O. SabelList of authors in order
- Landing page
-
https://doi.org/10.1186/s41747-025-00579-wPublisher landing page
- PDF URL
-
https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-wDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-wDirect OA link when available
- Concepts
-
Interquartile range, Nodule (geology), Medicine, Radiology, False positive paradox, True positive rate, Matching (statistics), Neuroradiology, Nuclear medicine, Artificial intelligence, Surgery, Pathology, Computer science, Neurology, Psychiatry, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410028416 |
|---|---|
| doi | https://doi.org/10.1186/s41747-025-00579-w |
| ids.doi | https://doi.org/10.1186/s41747-025-00579-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40316834 |
| ids.openalex | https://openalex.org/W4410028416 |
| fwci | 14.6694238 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008875 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Middle Aged |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001185 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Artificial Intelligence |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000368 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Aged |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D014057 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Tomography, X-Ray Computed |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012189 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Retrospective Studies |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D008175 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Lung Neoplasms |
| mesh[9].qualifier_ui | Q000000981 |
| mesh[9].descriptor_ui | D055613 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnostic imaging |
| mesh[9].descriptor_name | Multiple Pulmonary Nodules |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D003074 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Solitary Pulmonary Nodule |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D005500 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Follow-Up Studies |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D011857 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008875 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Middle Aged |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D005260 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Female |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D001185 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Artificial Intelligence |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008297 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Male |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000368 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Aged |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D014057 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Tomography, X-Ray Computed |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D012189 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Retrospective Studies |
| mesh[22].qualifier_ui | Q000000981 |
| mesh[22].descriptor_ui | D008175 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | diagnostic imaging |
| mesh[22].descriptor_name | Lung Neoplasms |
| mesh[23].qualifier_ui | Q000000981 |
| mesh[23].descriptor_ui | D055613 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnostic imaging |
| mesh[23].descriptor_name | Multiple Pulmonary Nodules |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000465 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Algorithms |
| mesh[25].qualifier_ui | Q000000981 |
| mesh[25].descriptor_ui | D003074 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | diagnostic imaging |
| mesh[25].descriptor_name | Solitary Pulmonary Nodule |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D005500 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Follow-Up Studies |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D011857 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| type | article |
| title | Artificial intelligence-based automated matching of pulmonary nodules on follow-up chest CT |
| biblio.issue | 1 |
| biblio.volume | 9 |
| biblio.last_page | 48 |
| biblio.first_page | 48 |
| topics[0].id | https://openalex.org/T10202 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Lung Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1480 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1815 |
| apc_paid.value | 1480 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1815 |
| concepts[0].id | https://openalex.org/C119060515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7308046221733093 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1916617 |
| concepts[0].display_name | Interquartile range |
| concepts[1].id | https://openalex.org/C2776731575 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7094535231590271 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2916245 |
| concepts[1].display_name | Nodule (geology) |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6952275037765503 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C126838900 |
| concepts[3].level | 1 |
| concepts[3].score | 0.542181134223938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[3].display_name | Radiology |
| concepts[4].id | https://openalex.org/C64869954 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5161489248275757 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[4].display_name | False positive paradox |
| concepts[5].id | https://openalex.org/C2989486834 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5070943832397461 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3808900 |
| concepts[5].display_name | True positive rate |
| concepts[6].id | https://openalex.org/C165064840 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5059689879417419 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[6].display_name | Matching (statistics) |
| concepts[7].id | https://openalex.org/C2779889316 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47767242789268494 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q642836 |
| concepts[7].display_name | Neuroradiology |
| concepts[8].id | https://openalex.org/C2989005 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4231570065021515 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[8].display_name | Nuclear medicine |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18051624298095703 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C141071460 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14887329936027527 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[10].display_name | Surgery |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12802603840827942 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09125927090644836 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C16568411 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q83042 |
| concepts[13].display_name | Neurology |
| concepts[14].id | https://openalex.org/C118552586 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[14].display_name | Psychiatry |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/interquartile-range |
| keywords[0].score | 0.7308046221733093 |
| keywords[0].display_name | Interquartile range |
| keywords[1].id | https://openalex.org/keywords/nodule |
| keywords[1].score | 0.7094535231590271 |
| keywords[1].display_name | Nodule (geology) |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6952275037765503 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/radiology |
| keywords[3].score | 0.542181134223938 |
| keywords[3].display_name | Radiology |
| keywords[4].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[4].score | 0.5161489248275757 |
| keywords[4].display_name | False positive paradox |
| keywords[5].id | https://openalex.org/keywords/true-positive-rate |
| keywords[5].score | 0.5070943832397461 |
| keywords[5].display_name | True positive rate |
| keywords[6].id | https://openalex.org/keywords/matching |
| keywords[6].score | 0.5059689879417419 |
| keywords[6].display_name | Matching (statistics) |
| keywords[7].id | https://openalex.org/keywords/neuroradiology |
| keywords[7].score | 0.47767242789268494 |
| keywords[7].display_name | Neuroradiology |
| keywords[8].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[8].score | 0.4231570065021515 |
| keywords[8].display_name | Nuclear medicine |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.18051624298095703 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/surgery |
| keywords[10].score | 0.14887329936027527 |
| keywords[10].display_name | Surgery |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.12802603840827942 |
| keywords[11].display_name | Pathology |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.09125927090644836 |
| keywords[12].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1186/s41747-025-00579-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035668652 |
| locations[0].source.issn | 2509-9280 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2509-9280 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | European Radiology Experimental |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-w |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Radiology Experimental |
| locations[0].landing_page_url | https://doi.org/10.1186/s41747-025-00579-w |
| locations[1].id | pmid:40316834 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | European radiology experimental |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40316834 |
| locations[2].id | pmh:oai:doaj.org/article:90a6d7825cb34046bde422f1b43f77b2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | European Radiology Experimental, Vol 9, Iss 1, Pp 1-11 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/90a6d7825cb34046bde422f1b43f77b2 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12048373 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Eur Radiol Exp |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12048373 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5001676988 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3089-9606 |
| authorships[0].author.display_name | Nicola Fink |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210129183 |
| authorships[0].affiliations[0].raw_affiliation_string | Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany. [email protected]. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I4210129183 |
| authorships[0].institutions[0].ror | https://ror.org/03dx11k66 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210129183, https://openalex.org/I4411590659 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | German Center for Lung Research |
| authorships[0].institutions[1].id | https://openalex.org/I3018771216 |
| authorships[0].institutions[1].ror | https://ror.org/02jet3w32 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | LMU Klinikum |
| authorships[0].institutions[2].id | https://openalex.org/I8204097 |
| authorships[0].institutions[2].ror | https://ror.org/05591te55 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I8204097 |
| authorships[0].institutions[2].country_code | DE |
| authorships[0].institutions[2].display_name | Ludwig-Maximilians-Universität München |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicola Fink |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany. [email protected]., Department of Radiology, University Hospital, LMU Munich, Munich, Germany. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5080977311 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4528-1507 |
| authorships[1].author.display_name | Jonathan I. Sperl |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210153902 |
| authorships[1].affiliations[0].raw_affiliation_string | Siemens Healthineers, Erlangen, Germany. |
| authorships[1].institutions[0].id | https://openalex.org/I4210153902 |
| authorships[1].institutions[0].ror | https://ror.org/0449c4c15 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153902 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Siemens Healthcare (Germany) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan I Sperl |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Siemens Healthineers, Erlangen, Germany. |
| authorships[2].author.id | https://openalex.org/A5069899157 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6695-2958 |
| authorships[2].author.display_name | Johannes Rueckel |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[2].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[2].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | LMU Klinikum |
| authorships[2].institutions[1].id | https://openalex.org/I8204097 |
| authorships[2].institutions[1].ror | https://ror.org/05591te55 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Johannes Rueckel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[3].author.id | https://openalex.org/A5020676803 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5236-4373 |
| authorships[3].author.display_name | Anna Theresa Stüber |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I8204097 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Statistics, Statistical Learning & Data Science, LMU Munich, Munich, Germany. |
| authorships[3].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[3].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | LMU Klinikum |
| authorships[3].institutions[1].id | https://openalex.org/I8204097 |
| authorships[3].institutions[1].ror | https://ror.org/05591te55 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[3].institutions[1].country_code | DE |
| authorships[3].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Theresa Stüber |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Department of Statistics, Statistical Learning & Data Science, LMU Munich, Munich, Germany. |
| authorships[4].author.id | https://openalex.org/A5031261622 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0964-8386 |
| authorships[4].author.display_name | Sophia S. Goller |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[4].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[4].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | LMU Klinikum |
| authorships[4].institutions[1].id | https://openalex.org/I8204097 |
| authorships[4].institutions[1].ror | https://ror.org/05591te55 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sophia S Goller |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[5].author.id | https://openalex.org/A5067895405 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4849-8034 |
| authorships[5].author.display_name | Jan Rudolph |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[5].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[5].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | LMU Klinikum |
| authorships[5].institutions[1].id | https://openalex.org/I8204097 |
| authorships[5].institutions[1].ror | https://ror.org/05591te55 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jan Rudolph |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[6].author.id | https://openalex.org/A5044505205 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Felix Escher |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[6].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[6].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | LMU Klinikum |
| authorships[6].institutions[1].id | https://openalex.org/I8204097 |
| authorships[6].institutions[1].ror | https://ror.org/05591te55 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[6].institutions[1].country_code | DE |
| authorships[6].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Felix Escher |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[7].author.id | https://openalex.org/A5043960893 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Theresia Aschauer |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[7].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[7].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | LMU Klinikum |
| authorships[7].institutions[1].id | https://openalex.org/I8204097 |
| authorships[7].institutions[1].ror | https://ror.org/05591te55 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Theresia Aschauer |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[8].author.id | https://openalex.org/A5041145907 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6248-5128 |
| authorships[8].author.display_name | Boj Hoppe |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[8].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[8].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | LMU Klinikum |
| authorships[8].institutions[1].id | https://openalex.org/I8204097 |
| authorships[8].institutions[1].ror | https://ror.org/05591te55 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[8].institutions[1].country_code | DE |
| authorships[8].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Boj F Hoppe |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[9].author.id | https://openalex.org/A5057700552 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8762-8594 |
| authorships[9].author.display_name | Jens Ricke |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[9].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[9].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | LMU Klinikum |
| authorships[9].institutions[1].id | https://openalex.org/I8204097 |
| authorships[9].institutions[1].ror | https://ror.org/05591te55 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[9].institutions[1].country_code | DE |
| authorships[9].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jens Ricke |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[10].author.id | https://openalex.org/A5063672058 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6027-7309 |
| authorships[10].author.display_name | Bastian O. Sabel |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210129183 |
| authorships[10].affiliations[0].raw_affiliation_string | Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany. |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[10].affiliations[1].raw_affiliation_string | Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| authorships[10].affiliations[2].institution_ids | https://openalex.org/I4210125421 |
| authorships[10].affiliations[2].raw_affiliation_string | Department of Radiology, Asklepios Lung Clinic Munich-Gauting, Gauting, Germany. |
| authorships[10].institutions[0].id | https://openalex.org/I4210125421 |
| authorships[10].institutions[0].ror | https://ror.org/02v4fpg03 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210125421 |
| authorships[10].institutions[0].country_code | DE |
| authorships[10].institutions[0].display_name | Asklepios Fachkliniken München-Gauting |
| authorships[10].institutions[1].id | https://openalex.org/I4210129183 |
| authorships[10].institutions[1].ror | https://ror.org/03dx11k66 |
| authorships[10].institutions[1].type | facility |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210129183, https://openalex.org/I4411590659 |
| authorships[10].institutions[1].country_code | DE |
| authorships[10].institutions[1].display_name | German Center for Lung Research |
| authorships[10].institutions[2].id | https://openalex.org/I3018771216 |
| authorships[10].institutions[2].ror | https://ror.org/02jet3w32 |
| authorships[10].institutions[2].type | healthcare |
| authorships[10].institutions[2].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[10].institutions[2].country_code | DE |
| authorships[10].institutions[2].display_name | LMU Klinikum |
| authorships[10].institutions[3].id | https://openalex.org/I8204097 |
| authorships[10].institutions[3].ror | https://ror.org/05591te55 |
| authorships[10].institutions[3].type | education |
| authorships[10].institutions[3].lineage | https://openalex.org/I8204097 |
| authorships[10].institutions[3].country_code | DE |
| authorships[10].institutions[3].display_name | Ludwig-Maximilians-Universität München |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Bastian O Sabel |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany., Department of Radiology, Asklepios Lung Clinic Munich-Gauting, Gauting, Germany., Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-w |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial intelligence-based automated matching of pulmonary nodules on follow-up chest CT |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10202 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Lung Cancer Diagnosis and Treatment |
| related_works | https://openalex.org/W2027184711, https://openalex.org/W1557094818, https://openalex.org/W4287692494, https://openalex.org/W3027053746, https://openalex.org/W3129715955, https://openalex.org/W3047594718, https://openalex.org/W2953243682, https://openalex.org/W4299651861, https://openalex.org/W4386222044, https://openalex.org/W2086542911 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s41747-025-00579-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035668652 |
| best_oa_location.source.issn | 2509-9280 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2509-9280 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | European Radiology Experimental |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-w |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Radiology Experimental |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s41747-025-00579-w |
| primary_location.id | doi:10.1186/s41747-025-00579-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035668652 |
| primary_location.source.issn | 2509-9280 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2509-9280 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | European Radiology Experimental |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://eurradiolexp.springeropen.com/counter/pdf/10.1186/s41747-025-00579-w |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Radiology Experimental |
| primary_location.landing_page_url | https://doi.org/10.1186/s41747-025-00579-w |
| publication_date | 2025-05-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2889630644, https://openalex.org/W1984781901, https://openalex.org/W2971828568, https://openalex.org/W2594318146, https://openalex.org/W2901404117, https://openalex.org/W1950640967, https://openalex.org/W2114175038, https://openalex.org/W130099911, https://openalex.org/W3003415550, https://openalex.org/W2604338567, https://openalex.org/W3092338402, https://openalex.org/W2928271642, https://openalex.org/W2948691893, https://openalex.org/W2166521422, https://openalex.org/W2120903075, https://openalex.org/W2990456966, https://openalex.org/W1988014376, https://openalex.org/W2117346638, https://openalex.org/W3022485382, https://openalex.org/W4282926984, https://openalex.org/W2584017349, https://openalex.org/W4229034731, https://openalex.org/W3125542419, https://openalex.org/W2019607817, https://openalex.org/W2966702013, https://openalex.org/W2134600197, https://openalex.org/W2771590529, https://openalex.org/W1901129140, https://openalex.org/W3009715377, https://openalex.org/W2119851068, https://openalex.org/W3134305302, https://openalex.org/W3187190008, https://openalex.org/W4212845241, https://openalex.org/W3155078015, https://openalex.org/W2082371932, https://openalex.org/W2011970480, https://openalex.org/W2112563636, https://openalex.org/W2030604164, https://openalex.org/W3161722340, https://openalex.org/W2967815262, https://openalex.org/W4402552906, https://openalex.org/W4225311257 |
| referenced_works_count | 42 |
| abstract_inverted_index.( | 192, 220 |
| abstract_inverted_index.2 | 45 |
| abstract_inverted_index.= | 194 |
| abstract_inverted_index.a | 110, 256, 273, 305 |
| abstract_inverted_index.p | 193, 221 |
| abstract_inverted_index.36 | 136 |
| abstract_inverted_index.50 | 190 |
| abstract_inverted_index.62 | 114 |
| abstract_inverted_index.AI | 302 |
| abstract_inverted_index.An | 54 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.Of | 146 |
| abstract_inverted_index.We | 21 |
| abstract_inverted_index.an | 26, 197 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.in | 83, 164, 185, 206, 216, 228, 233, 245, 320, 344, 348 |
| abstract_inverted_index.it | 251 |
| abstract_inverted_index.mm | 82 |
| abstract_inverted_index.of | 16, 25, 91, 113, 134, 199, 241, 258, 268, 296, 310 |
| abstract_inverted_index.on | 86, 95, 125, 253, 288, 329 |
| abstract_inverted_index.to | 188, 314, 339 |
| abstract_inverted_index.up | 313 |
| abstract_inverted_index.(46 | 107 |
| abstract_inverted_index.253 | 120 |
| abstract_inverted_index.964 | 151 |
| abstract_inverted_index.CT. | 88 |
| abstract_inverted_index.CTs | 121 |
| abstract_inverted_index.Key | 299 |
| abstract_inverted_index.One | 104 |
| abstract_inverted_index.The | 2, 65, 89, 158, 172, 237, 262, 301 |
| abstract_inverted_index.age | 112 |
| abstract_inverted_index.and | 43, 63, 68, 98, 119, 156, 167, 211, 230, 255, 278, 285, 291, 312, 323, 332 |
| abstract_inverted_index.but | 250 |
| abstract_inverted_index.for | 5, 11, 31, 59, 71, 76, 161, 276 |
| abstract_inverted_index.has | 336 |
| abstract_inverted_index.per | 175 |
| abstract_inverted_index.ten | 78, 127 |
| abstract_inverted_index.the | 9, 14, 23, 69, 77, 92, 126, 147, 282, 294, 337 |
| abstract_inverted_index.was | 57, 100, 170, 226, 248 |
| abstract_inverted_index.≤ | 44 |
| abstract_inverted_index.< | 222 |
| abstract_inverted_index.(CT) | 49 |
| abstract_inverted_index.This | 334 |
| abstract_inverted_index.also | 101 |
| abstract_inverted_index.both | 165, 321 |
| abstract_inverted_index.case | 176 |
| abstract_inverted_index.need | 10 |
| abstract_inverted_index.over | 19, 189 |
| abstract_inverted_index.rate | 67, 94, 160, 174, 183, 240, 309 |
| abstract_inverted_index.than | 215 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.used | 58 |
| abstract_inverted_index.were | 51, 74, 122, 132, 138, 153, 204 |
| abstract_inverted_index.when | 316 |
| abstract_inverted_index.with | 41, 109, 196 |
| abstract_inverted_index.1,105 | 148 |
| abstract_inverted_index.1,141 | 130 |
| abstract_inverted_index.87.2% | 311 |
| abstract_inverted_index.97.8% | 315 |
| abstract_inverted_index.based | 287 |
| abstract_inverted_index.basis | 275 |
| abstract_inverted_index.chest | 46 |
| abstract_inverted_index.high, | 249 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.range | 117 |
| abstract_inverted_index.rates | 203 |
| abstract_inverted_index.scans | 169 |
| abstract_inverted_index.solid | 274, 345 |
| abstract_inverted_index.time. | 20 |
| abstract_inverted_index.tools | 12 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.years | 115 |
| abstract_inverted_index.(3.2%) | 137 |
| abstract_inverted_index.97.8%. | 171 |
| abstract_inverted_index.Missed | 224 |
| abstract_inverted_index.Points | 300 |
| abstract_inverted_index.causes | 70 |
| abstract_inverted_index.demand | 4 |
| abstract_inverted_index.higher | 205 |
| abstract_inverted_index.median | 111 |
| abstract_inverted_index.missed | 200 |
| abstract_inverted_index.nodule | 33, 61, 96, 289, 307, 330 |
| abstract_inverted_index.number | 97, 257, 292, 331 |
| abstract_inverted_index.ranged | 177 |
| abstract_inverted_index.scans. | 325 |
| abstract_inverted_index.study, | 39 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.(5–30 | 81 |
| abstract_inverted_index.(71.1%) | 219 |
| abstract_inverted_index.(82.4%) | 213 |
| abstract_inverted_index.(87.2%) | 152 |
| abstract_inverted_index.(median | 179 |
| abstract_inverted_index.0.001). | 223 |
| abstract_inverted_index.0.003), | 195 |
| abstract_inverted_index.90.0%). | 180 |
| abstract_inverted_index.Correct | 181 |
| abstract_inverted_index.Methods | 35 |
| abstract_inverted_index.Results | 103 |
| abstract_inverted_index.correct | 238, 306 |
| abstract_inverted_index.depends | 252 |
| abstract_inverted_index.enables | 264 |
| abstract_inverted_index.growing | 3 |
| abstract_inverted_index.hundred | 105 |
| abstract_inverted_index.imaging | 7 |
| abstract_inverted_index.largest | 79, 128 |
| abstract_inverted_index.lesions | 80, 131 |
| abstract_inverted_index.nodules | 18, 42, 144, 162, 191, 214, 218, 244, 318 |
| abstract_inverted_index.precise | 265 |
| abstract_inverted_index.support | 340 |
| abstract_inverted_index.(84.4%), | 210 |
| abstract_inverted_index.(91.8%), | 208 |
| abstract_inverted_index.AI-based | 55, 297 |
| abstract_inverted_index.Abstract | 0, 352 |
| abstract_inverted_index.Focusing | 124 |
| abstract_inverted_index.Matching | 202, 326 |
| abstract_inverted_index.accuracy | 327 |
| abstract_inverted_index.accurate | 279 |
| abstract_inverted_index.achieved | 304 |
| abstract_inverted_index.baseline | 87, 166, 322 |
| abstract_inverted_index.clinical | 349 |
| abstract_inverted_index.computed | 47 |
| abstract_inverted_index.criteria | 343 |
| abstract_inverted_index.depended | 328 |
| abstract_inverted_index.detected | 155, 319 |
| abstract_inverted_index.enhances | 293 |
| abstract_inverted_index.lesions, | 129 |
| abstract_inverted_index.matched. | 157 |
| abstract_inverted_index.matching | 66, 73, 93, 159, 173, 182, 225, 267, 308 |
| abstract_inverted_index.nodules, | 150, 270 |
| abstract_inverted_index.nodules. | 235, 259 |
| abstract_inverted_index.patients | 40, 106 |
| abstract_inverted_index.response | 341 |
| abstract_inverted_index.results. | 298 |
| abstract_inverted_index.57–69), | 118 |
| abstract_inverted_index.Graphical | 351 |
| abstract_inverted_index.Relevance | 260 |
| abstract_inverted_index.algorithm | 56, 263, 303, 335 |
| abstract_inverted_index.analyzed. | 102 |
| abstract_inverted_index.automated | 32, 60 |
| abstract_inverted_index.correctly | 154 |
| abstract_inverted_index.decreased | 184 |
| abstract_inverted_index.detection | 62 |
| abstract_inverted_index.diameter) | 84 |
| abstract_inverted_index.evaluated | 22, 75 |
| abstract_inverted_index.females), | 108 |
| abstract_inverted_index.follow-up | 6, 168, 186, 246, 266, 324 |
| abstract_inverted_index.included. | 123 |
| abstract_inverted_index.incorrect | 72, 231 |
| abstract_inverted_index.matching. | 34, 64, 201 |
| abstract_inverted_index.potential | 338 |
| abstract_inverted_index.practice. | 350 |
| abstract_inverted_index.providing | 272 |
| abstract_inverted_index.pulmonary | 17, 243, 269 |
| abstract_inverted_index.selected. | 53 |
| abstract_inverted_index.statement | 261 |
| abstract_inverted_index.strengths | 284 |
| abstract_inverted_index.(AI)-based | 29 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 236 |
| abstract_inverted_index.artificial | 27 |
| abstract_inverted_index.assessment | 15 |
| abstract_inverted_index.assignment | 232 |
| abstract_inverted_index.dependence | 90 |
| abstract_inverted_index.evaluation | 342 |
| abstract_inverted_index.highlights | 8 |
| abstract_inverted_index.identified | 142, 149 |
| abstract_inverted_index.metastatic | 242 |
| abstract_inverted_index.peripheral | 209 |
| abstract_inverted_index.registered | 85, 163 |
| abstract_inverted_index.structures | 140 |
| abstract_inverted_index.supporting | 13 |
| abstract_inverted_index.tomography | 48 |
| abstract_inverted_index.weaknesses | 286 |
| abstract_inverted_index.considering | 317 |
| abstract_inverted_index.evaluations | 347 |
| abstract_inverted_index.identified, | 133 |
| abstract_inverted_index.incorrectly | 141 |
| abstract_inverted_index.parenchymal | 207 |
| abstract_inverted_index.performance | 24 |
| abstract_inverted_index.potentially | 271 |
| abstract_inverted_index.tumor-based | 346 |
| abstract_inverted_index.evaluations. | 280 |
| abstract_inverted_index.examinations | 50, 187, 247 |
| abstract_inverted_index.intelligence | 28 |
| abstract_inverted_index.juxtaphrenic | 217, 234 |
| abstract_inverted_index.localization | 99, 254, 290 |
| abstract_inverted_index.standardized | 277 |
| abstract_inverted_index.80.0–100.0% | 178 |
| abstract_inverted_index.Understanding | 281 |
| abstract_inverted_index.algorithm’s | 283 |
| abstract_inverted_index.juxtavascular | 212 |
| abstract_inverted_index.localization. | 333 |
| abstract_inverted_index.single-center | 38 |
| abstract_inverted_index.(interquartile | 116 |
| abstract_inverted_index.interpretation | 295 |
| abstract_inverted_index.juxtavascular, | 229 |
| abstract_inverted_index.overrepresented | 227 |
| abstract_inverted_index.retrospectively | 52 |
| abstract_inverted_index.(false-positives). | 145 |
| abstract_inverted_index.automated-matching | 239 |
| abstract_inverted_index.overrepresentation | 198 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.96950899 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |