Artificial intelligence-based neural network modeling of adsorptive removal of phenol from aquatic environment Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.dwt.2024.100564
In this study, adsorptive uptake of phenol from aqueous system using Arachis hypogaea (groundnut) shell-based adsorbent was experimentally investigated and modelled using artificial intelligence-based neural network approach. Artificial neural networks with different number of neurons were designed using Levenberg-Marquardt algorithm to find the best model for phenol adsorption. The feedforward back propagation neural network comprising TRAINLM, LARNGDM and TANSIG as training, adaptation learning and transfer functions, respectively, with ten neurons in the hidden layer exhibited the optimal architecture with the strongest correlation R2=0.9901 and the smallest mean square error MSE=0.045. The studies indicated a maximum adsorptive uptake of phenol to be 37.31 mg/g onto the activated shell powder. The kinetic analysis favored pseudo second order R2=0.9999and the equilibrium data was best represented by Freundlich isotherm modelR2=0.9976. Phenolic remediation phenomenon ensued in a spontaneous manner, was exothermic ∆H0=−34.25kJ/moland involved physisorption. The experimental results are agreement with model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.dwt.2024.100564
- OA Status
- diamond
- Cited By
- 5
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399883102
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399883102Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.dwt.2024.100564Digital Object Identifier
- Title
-
Artificial intelligence-based neural network modeling of adsorptive removal of phenol from aquatic environmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-21Full publication date if available
- Authors
-
Bello Abdu Isah, Muthamilselvi Ponnuchamy, B. Senthil Rathi, P. Senthil Kumar, Ashish Kapoor, Manjula Rajagopal, Anjali Awasthi, Gayathri RangasamyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.dwt.2024.100564Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.dwt.2024.100564Direct OA link when available
- Concepts
-
Artificial neural network, Phenol, Environmental science, Computer science, Chemistry, Artificial intelligence, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399883102 |
|---|---|
| doi | https://doi.org/10.1016/j.dwt.2024.100564 |
| ids.doi | https://doi.org/10.1016/j.dwt.2024.100564 |
| ids.openalex | https://openalex.org/W4399883102 |
| fwci | 2.82574478 |
| type | article |
| title | Artificial intelligence-based neural network modeling of adsorptive removal of phenol from aquatic environment |
| biblio.issue | |
| biblio.volume | 319 |
| biblio.last_page | 100564 |
| biblio.first_page | 100564 |
| topics[0].id | https://openalex.org/T14249 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9722999930381775 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2311 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Water Quality Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7333171963691711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C2777702071 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5981074571609497 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q130336 |
| concepts[1].display_name | Phenol |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39154112339019775 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3701891601085663 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C185592680 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3572065830230713 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[4].display_name | Chemistry |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34595996141433716 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C178790620 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09452071785926819 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[6].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7333171963691711 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/phenol |
| keywords[1].score | 0.5981074571609497 |
| keywords[1].display_name | Phenol |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.39154112339019775 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3701891601085663 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/chemistry |
| keywords[4].score | 0.3572065830230713 |
| keywords[4].display_name | Chemistry |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.34595996141433716 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/organic-chemistry |
| keywords[6].score | 0.09452071785926819 |
| keywords[6].display_name | Organic chemistry |
| language | en |
| locations[0].id | doi:10.1016/j.dwt.2024.100564 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S124203677 |
| locations[0].source.issn | 1944-3986, 1944-3994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1944-3986 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Desalination and Water Treatment |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Desalination and Water Treatment |
| locations[0].landing_page_url | https://doi.org/10.1016/j.dwt.2024.100564 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5099361569 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bello Abdu Isah |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I145286018 |
| authorships[0].institutions[0].ror | https://ror.org/050113w36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bello Abdu Isah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5040166011 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Muthamilselvi Ponnuchamy |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I145286018 |
| authorships[1].institutions[0].ror | https://ror.org/050113w36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muthamilselvi Ponnuchamy |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[2].author.id | https://openalex.org/A5087968628 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6284-9120 |
| authorships[2].author.display_name | B. Senthil Rathi |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20107917, https://openalex.org/I916357946 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, Tamil Nadu, India |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I916357946 |
| authorships[2].affiliations[1].raw_affiliation_string | Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, Tamil Nadu, India |
| authorships[2].institutions[0].id | https://openalex.org/I916357946 |
| authorships[2].institutions[0].ror | https://ror.org/054psm803 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I916357946 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Sri Sivasubramaniya Nadar College of Engineering |
| authorships[2].institutions[1].id | https://openalex.org/I20107917 |
| authorships[2].institutions[1].ror | https://ror.org/0108gdg43 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I20107917 |
| authorships[2].institutions[1].country_code | IN |
| authorships[2].institutions[1].display_name | Sri Ramachandra Institute of Higher Education and Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | B.Senthil Rathi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, Tamil Nadu, India, Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110, Tamil Nadu, India |
| authorships[3].author.id | https://openalex.org/A5055444990 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9389-5541 |
| authorships[3].author.display_name | P. Senthil Kumar |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I175691731 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry- 605014, India |
| authorships[3].institutions[0].id | https://openalex.org/I175691731 |
| authorships[3].institutions[0].ror | https://ror.org/01a3mef16 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I175691731 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Pondicherry University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | P. Senthil Kumar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry- 605014, India |
| authorships[4].author.id | https://openalex.org/A5046810768 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4686-394X |
| authorships[4].author.display_name | Ashish Kapoor |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210090456 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh 208002, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210090456 |
| authorships[4].institutions[0].ror | https://ror.org/0181a8730 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210090456 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Harcourt Butler Technical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ashish Kapoor |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh 208002, India |
| authorships[5].author.id | https://openalex.org/A5102720815 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Manjula Rajagopal |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[5].institutions[0].id | https://openalex.org/I145286018 |
| authorships[5].institutions[0].ror | https://ror.org/050113w36 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Manjula Rajagopal |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India |
| authorships[6].author.id | https://openalex.org/A5102850190 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2031-8748 |
| authorships[6].author.display_name | Anjali Awasthi |
| authorships[6].countries | LB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I56306041 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Engineering, Lebanese American University, Byblos, Lebanon |
| authorships[6].institutions[0].id | https://openalex.org/I56306041 |
| authorships[6].institutions[0].ror | https://ror.org/00hqkan37 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I56306041 |
| authorships[6].institutions[0].country_code | LB |
| authorships[6].institutions[0].display_name | Lebanese American University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Anjali Awasthi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Engineering, Lebanese American University, Byblos, Lebanon |
| authorships[7].author.id | https://openalex.org/A5049372903 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Gayathri Rangasamy |
| authorships[7].countries | IN, LB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[7].affiliations[0].raw_affiliation_string | University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I56306041 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Engineering, Lebanese American University, Byblos, Lebanon |
| authorships[7].institutions[0].id | https://openalex.org/I101407740 |
| authorships[7].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Chandigarh University |
| authorships[7].institutions[1].id | https://openalex.org/I56306041 |
| authorships[7].institutions[1].ror | https://ror.org/00hqkan37 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I56306041 |
| authorships[7].institutions[1].country_code | LB |
| authorships[7].institutions[1].display_name | Lebanese American University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Gayathri Rangasamy |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | School of Engineering, Lebanese American University, Byblos, Lebanon, University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.dwt.2024.100564 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial intelligence-based neural network modeling of adsorptive removal of phenol from aquatic environment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14249 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9722999930381775 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2311 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Water Quality Monitoring and Analysis |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487, https://openalex.org/W1986764834 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.dwt.2024.100564 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S124203677 |
| best_oa_location.source.issn | 1944-3986, 1944-3994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1944-3986 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Desalination and Water Treatment |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Desalination and Water Treatment |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.dwt.2024.100564 |
| primary_location.id | doi:10.1016/j.dwt.2024.100564 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S124203677 |
| primary_location.source.issn | 1944-3986, 1944-3994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1944-3986 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Desalination and Water Treatment |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Desalination and Water Treatment |
| primary_location.landing_page_url | https://doi.org/10.1016/j.dwt.2024.100564 |
| publication_date | 2024-06-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6735313909, https://openalex.org/W2346868242, https://openalex.org/W2582499918, https://openalex.org/W3193130158, https://openalex.org/W2900705110, https://openalex.org/W2580561717, https://openalex.org/W2772123271, https://openalex.org/W2780137270, https://openalex.org/W2887328484, https://openalex.org/W2913613288, https://openalex.org/W2505574534, https://openalex.org/W2408089261, https://openalex.org/W2055892691, https://openalex.org/W3157149188, https://openalex.org/W3094817679, https://openalex.org/W3156367570, https://openalex.org/W6848987972, https://openalex.org/W2036168959, https://openalex.org/W2905424314, https://openalex.org/W2033581663, https://openalex.org/W2903463505, https://openalex.org/W2958807243, https://openalex.org/W2885847622, https://openalex.org/W2946150933, https://openalex.org/W2793163001, https://openalex.org/W2517312548, https://openalex.org/W2000070747, https://openalex.org/W2901135138, https://openalex.org/W2888315679, https://openalex.org/W2793084056, https://openalex.org/W3005043396, https://openalex.org/W2419126454, https://openalex.org/W2063222659, https://openalex.org/W3157983468, https://openalex.org/W2218584056, https://openalex.org/W3014942619, https://openalex.org/W2996685422, https://openalex.org/W2900346612, https://openalex.org/W2753801052, https://openalex.org/W2946268517, https://openalex.org/W2790654086, https://openalex.org/W2204158801, https://openalex.org/W2907441693, https://openalex.org/W2912655651, https://openalex.org/W6739357010, https://openalex.org/W1964956955, https://openalex.org/W3010919095, https://openalex.org/W2075855774, https://openalex.org/W2061582892, https://openalex.org/W2072859058, https://openalex.org/W1815281117, https://openalex.org/W6780089730, https://openalex.org/W2761012527, https://openalex.org/W2291603953, https://openalex.org/W1616656956, https://openalex.org/W2584388489, https://openalex.org/W6676614789, https://openalex.org/W2047063672, https://openalex.org/W2589662406, https://openalex.org/W3213631024, https://openalex.org/W2597225184, https://openalex.org/W3212251833, https://openalex.org/W4317491706, https://openalex.org/W2626796158, https://openalex.org/W2111341526 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 93, 131 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.be | 100 |
| abstract_inverted_index.by | 122 |
| abstract_inverted_index.in | 70, 130 |
| abstract_inverted_index.of | 5, 33, 97 |
| abstract_inverted_index.to | 40, 99 |
| abstract_inverted_index.The | 48, 90, 108, 139 |
| abstract_inverted_index.and | 19, 57, 63, 83 |
| abstract_inverted_index.are | 142 |
| abstract_inverted_index.for | 45 |
| abstract_inverted_index.ten | 68 |
| abstract_inverted_index.the | 42, 71, 75, 79, 84, 104, 116 |
| abstract_inverted_index.was | 16, 119, 134 |
| abstract_inverted_index.back | 50 |
| abstract_inverted_index.best | 43, 120 |
| abstract_inverted_index.data | 118 |
| abstract_inverted_index.find | 41 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.mean | 86 |
| abstract_inverted_index.mg/g | 102 |
| abstract_inverted_index.onto | 103 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.were | 35 |
| abstract_inverted_index.with | 30, 67, 78, 144 |
| abstract_inverted_index.37.31 | 101 |
| abstract_inverted_index.error | 88 |
| abstract_inverted_index.layer | 73 |
| abstract_inverted_index.model | 44 |
| abstract_inverted_index.order | 114 |
| abstract_inverted_index.shell | 106 |
| abstract_inverted_index.using | 10, 21, 37 |
| abstract_inverted_index.TANSIG | 58 |
| abstract_inverted_index.ensued | 129 |
| abstract_inverted_index.hidden | 72 |
| abstract_inverted_index.model. | 145 |
| abstract_inverted_index.neural | 24, 28, 52 |
| abstract_inverted_index.number | 32 |
| abstract_inverted_index.phenol | 6, 46, 98 |
| abstract_inverted_index.pseudo | 112 |
| abstract_inverted_index.second | 113 |
| abstract_inverted_index.square | 87 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.system | 9 |
| abstract_inverted_index.uptake | 4, 96 |
| abstract_inverted_index.Arachis | 11 |
| abstract_inverted_index.LARNGDM | 56 |
| abstract_inverted_index.aqueous | 8 |
| abstract_inverted_index.favored | 111 |
| abstract_inverted_index.kinetic | 109 |
| abstract_inverted_index.manner, | 133 |
| abstract_inverted_index.maximum | 94 |
| abstract_inverted_index.network | 25, 53 |
| abstract_inverted_index.neurons | 34, 69 |
| abstract_inverted_index.optimal | 76 |
| abstract_inverted_index.powder. | 107 |
| abstract_inverted_index.results | 141 |
| abstract_inverted_index.studies | 91 |
| abstract_inverted_index.Phenolic | 126 |
| abstract_inverted_index.TRAINLM, | 55 |
| abstract_inverted_index.analysis | 110 |
| abstract_inverted_index.designed | 36 |
| abstract_inverted_index.hypogaea | 12 |
| abstract_inverted_index.involved | 137 |
| abstract_inverted_index.isotherm | 124 |
| abstract_inverted_index.learning | 62 |
| abstract_inverted_index.modelled | 20 |
| abstract_inverted_index.networks | 29 |
| abstract_inverted_index.smallest | 85 |
| abstract_inverted_index.transfer | 64 |
| abstract_inverted_index.R2=0.9901 | 82 |
| abstract_inverted_index.activated | 105 |
| abstract_inverted_index.adsorbent | 15 |
| abstract_inverted_index.agreement | 143 |
| abstract_inverted_index.algorithm | 39 |
| abstract_inverted_index.approach. | 26 |
| abstract_inverted_index.different | 31 |
| abstract_inverted_index.exhibited | 74 |
| abstract_inverted_index.indicated | 92 |
| abstract_inverted_index.strongest | 80 |
| abstract_inverted_index.training, | 60 |
| abstract_inverted_index.Artificial | 27 |
| abstract_inverted_index.Freundlich | 123 |
| abstract_inverted_index.MSE=0.045. | 89 |
| abstract_inverted_index.adaptation | 61 |
| abstract_inverted_index.adsorptive | 3, 95 |
| abstract_inverted_index.artificial | 22 |
| abstract_inverted_index.comprising | 54 |
| abstract_inverted_index.exothermic | 135 |
| abstract_inverted_index.functions, | 65 |
| abstract_inverted_index.phenomenon | 128 |
| abstract_inverted_index.(groundnut) | 13 |
| abstract_inverted_index.adsorption. | 47 |
| abstract_inverted_index.correlation | 81 |
| abstract_inverted_index.equilibrium | 117 |
| abstract_inverted_index.feedforward | 49 |
| abstract_inverted_index.propagation | 51 |
| abstract_inverted_index.remediation | 127 |
| abstract_inverted_index.represented | 121 |
| abstract_inverted_index.shell-based | 14 |
| abstract_inverted_index.spontaneous | 132 |
| abstract_inverted_index.R2=0.9999and | 115 |
| abstract_inverted_index.architecture | 77 |
| abstract_inverted_index.experimental | 140 |
| abstract_inverted_index.investigated | 18 |
| abstract_inverted_index.respectively, | 66 |
| abstract_inverted_index.experimentally | 17 |
| abstract_inverted_index.physisorption. | 138 |
| abstract_inverted_index.modelR2=0.9976. | 125 |
| abstract_inverted_index.intelligence-based | 23 |
| abstract_inverted_index.Levenberg-Marquardt | 38 |
| abstract_inverted_index.∆H0=−34.25kJ/moland | 136 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5049372903, https://openalex.org/A5040166011 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I101407740, https://openalex.org/I145286018, https://openalex.org/I56306041 |
| citation_normalized_percentile.value | 0.8459232 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |