Artificial intelligence computer-aided detection enhances synthesized mammograms: comparison with original digital mammograms alone and in combination with tomosynthesis images in an experimental setting Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/s12282-022-01396-4
Background It remains unclear whether original full-field digital mammograms (DMs) can be replaced with synthesized mammograms in both screening and diagnostic settings. To compare reader performance of artificial intelligence computer-aided detection synthesized mammograms (AI CAD SMs) with that of DM alone or in combination with digital breast tomosynthesis (DBT) images in an experimental setting. Methods We compared the performance of multireader ( n = 4) and reading multicase ( n = 388), in 84 cancers, 83 biopsy-proven benign lesions, and 221 normal or benign cases with negative results after 1-year follow-up. Each reading was independently interpreted with four reading modes: DM, AI CAD SM, DM + DBT, and AI CAD SM + DBT. The accuracy of probability of malignancy (POM) and five-category ratings were evaluated using areas under the receiver operating characteristic curve (AUC) in the random-reader analysis. Results The mean AUC values based on POM for DM, AI CAD SM, DM + DBT, and AI CAD SM + DBT were 0.871, 0.902, 0.895, and 0.909, respectively. The mean AUC of AI CAD SM was significantly higher ( P = 0.002) than that of DM. For calcification lesions, the sensitivity of SM and DM did not differ significantly ( P = 0.204). The mean AUC for AI CAD SM + DBT was higher than that of DM + DBT ( P = 0.082). ROC curves based on the five-category ratings showed similar proximity of the overall performance levels. Conclusions AI CAD SM alone was superior to DM alone. Also, AI CAD SM + DBT was superior to DM + DBT but not statistically significant.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s12282-022-01396-4
- https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdf
- OA Status
- hybrid
- Cited By
- 4
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292939513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292939513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s12282-022-01396-4Digital Object Identifier
- Title
-
Artificial intelligence computer-aided detection enhances synthesized mammograms: comparison with original digital mammograms alone and in combination with tomosynthesis images in an experimental settingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-24Full publication date if available
- Authors
-
Takayoshi Uematsu, Kazuaki Nakashima, Taiyo L. Harada, Hatsuko Nasu, Tatsuya IgarashiList of authors in order
- Landing page
-
https://doi.org/10.1007/s12282-022-01396-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdfDirect OA link when available
- Concepts
-
CAD, Medicine, Mammography, Receiver operating characteristic, Digital Breast Tomosynthesis, Digital mammography, Area under curve, Computer-aided diagnosis, Voxel, Nuclear medicine, Artificial intelligence, Breast cancer, Radiology, Internal medicine, Computer science, Cancer, Pharmacokinetics, Engineering, Engineering drawingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292939513 |
|---|---|
| doi | https://doi.org/10.1007/s12282-022-01396-4 |
| ids.doi | https://doi.org/10.1007/s12282-022-01396-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36001270 |
| ids.openalex | https://openalex.org/W4292939513 |
| fwci | 0.78319528 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D005260 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Female |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001185 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Artificial Intelligence |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D001940 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Breast |
| mesh[4].qualifier_ui | Q000000981 |
| mesh[4].descriptor_ui | D001943 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | diagnostic imaging |
| mesh[4].descriptor_name | Breast Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D003201 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Computers |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D008327 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Mammography |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012189 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Retrospective Studies |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001185 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Artificial Intelligence |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D001940 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Breast |
| mesh[12].qualifier_ui | Q000000981 |
| mesh[12].descriptor_ui | D001943 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | diagnostic imaging |
| mesh[12].descriptor_name | Breast Neoplasms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D003201 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Computers |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D008327 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Mammography |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012189 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Retrospective Studies |
| type | article |
| title | Artificial intelligence computer-aided detection enhances synthesized mammograms: comparison with original digital mammograms alone and in combination with tomosynthesis images in an experimental setting |
| biblio.issue | 1 |
| biblio.volume | 30 |
| biblio.last_page | 55 |
| biblio.first_page | 46 |
| grants[0].funder | https://openalex.org/F4320321171 |
| grants[0].award_id | |
| grants[0].funder_display_name | Fujifilm Holdings |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11361 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Digital Radiography and Breast Imaging |
| topics[2].id | https://openalex.org/T10556 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Global Cancer Incidence and Screening |
| funders[0].id | https://openalex.org/F4320321171 |
| funders[0].ror | https://ror.org/0493bmq37 |
| funders[0].display_name | Fujifilm Holdings |
| is_xpac | False |
| apc_list.value | 2690 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3390 |
| apc_paid.value | 2690 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3390 |
| concepts[0].id | https://openalex.org/C194789388 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8537576794624329 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17855283 |
| concepts[0].display_name | CAD |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6952190399169922 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2780472235 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6484680771827698 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[2].display_name | Mammography |
| concepts[3].id | https://openalex.org/C58471807 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6186408996582031 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[3].display_name | Receiver operating characteristic |
| concepts[4].id | https://openalex.org/C2909182381 |
| concepts[4].level | 5 |
| concepts[4].score | 0.6184215545654297 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7820316 |
| concepts[4].display_name | Digital Breast Tomosynthesis |
| concepts[5].id | https://openalex.org/C2781281974 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5979229211807251 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[5].display_name | Digital mammography |
| concepts[6].id | https://openalex.org/C3020225094 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5226121544837952 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q80091 |
| concepts[6].display_name | Area under curve |
| concepts[7].id | https://openalex.org/C2779549770 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45461615920066833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1122413 |
| concepts[7].display_name | Computer-aided diagnosis |
| concepts[8].id | https://openalex.org/C54170458 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4287464916706085 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[8].display_name | Voxel |
| concepts[9].id | https://openalex.org/C2989005 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39746394753456116 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[9].display_name | Nuclear medicine |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3973378837108612 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C530470458 |
| concepts[11].level | 3 |
| concepts[11].score | 0.38231372833251953 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[11].display_name | Breast cancer |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3108378052711487 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2546660602092743 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18459776043891907 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C121608353 |
| concepts[15].level | 2 |
| concepts[15].score | 0.18224436044692993 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[15].display_name | Cancer |
| concepts[16].id | https://openalex.org/C112705442 |
| concepts[16].level | 2 |
| concepts[16].score | 0.12079170346260071 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q323936 |
| concepts[16].display_name | Pharmacokinetics |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C199639397 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[18].display_name | Engineering drawing |
| keywords[0].id | https://openalex.org/keywords/cad |
| keywords[0].score | 0.8537576794624329 |
| keywords[0].display_name | CAD |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.6952190399169922 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/mammography |
| keywords[2].score | 0.6484680771827698 |
| keywords[2].display_name | Mammography |
| keywords[3].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[3].score | 0.6186408996582031 |
| keywords[3].display_name | Receiver operating characteristic |
| keywords[4].id | https://openalex.org/keywords/digital-breast-tomosynthesis |
| keywords[4].score | 0.6184215545654297 |
| keywords[4].display_name | Digital Breast Tomosynthesis |
| keywords[5].id | https://openalex.org/keywords/digital-mammography |
| keywords[5].score | 0.5979229211807251 |
| keywords[5].display_name | Digital mammography |
| keywords[6].id | https://openalex.org/keywords/area-under-curve |
| keywords[6].score | 0.5226121544837952 |
| keywords[6].display_name | Area under curve |
| keywords[7].id | https://openalex.org/keywords/computer-aided-diagnosis |
| keywords[7].score | 0.45461615920066833 |
| keywords[7].display_name | Computer-aided diagnosis |
| keywords[8].id | https://openalex.org/keywords/voxel |
| keywords[8].score | 0.4287464916706085 |
| keywords[8].display_name | Voxel |
| keywords[9].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[9].score | 0.39746394753456116 |
| keywords[9].display_name | Nuclear medicine |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3973378837108612 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/breast-cancer |
| keywords[11].score | 0.38231372833251953 |
| keywords[11].display_name | Breast cancer |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.3108378052711487 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.2546660602092743 |
| keywords[13].display_name | Internal medicine |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.18459776043891907 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/cancer |
| keywords[15].score | 0.18224436044692993 |
| keywords[15].display_name | Cancer |
| keywords[16].id | https://openalex.org/keywords/pharmacokinetics |
| keywords[16].score | 0.12079170346260071 |
| keywords[16].display_name | Pharmacokinetics |
| language | en |
| locations[0].id | doi:10.1007/s12282-022-01396-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S37889505 |
| locations[0].source.issn | 1340-6868, 1880-4233 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1340-6868 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Breast Cancer |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Breast Cancer |
| locations[0].landing_page_url | https://doi.org/10.1007/s12282-022-01396-4 |
| locations[1].id | pmid:36001270 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Breast cancer (Tokyo, Japan) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36001270 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9813027 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Breast Cancer |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9813027 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5050825345 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4462-7430 |
| authorships[0].author.display_name | Takayoshi Uematsu |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088324 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I4210088324 |
| authorships[0].institutions[0].ror | https://ror.org/0042ytd14 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210088324 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Shizuoka Cancer Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Takayoshi Uematsu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[1].author.id | https://openalex.org/A5070681358 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1023-0454 |
| authorships[1].author.display_name | Kazuaki Nakashima |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210088324 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I4210088324 |
| authorships[1].institutions[0].ror | https://ror.org/0042ytd14 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210088324 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Shizuoka Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kazuaki Nakashima |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[2].author.id | https://openalex.org/A5069922029 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3205-9440 |
| authorships[2].author.display_name | Taiyo L. Harada |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210088324 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I4210088324 |
| authorships[2].institutions[0].ror | https://ror.org/0042ytd14 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210088324 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Shizuoka Cancer Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taiyo Leopoldo Harada |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Breast Imaging and Breast Intervention Radiology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi, Shizuoka, 411-8777, Japan |
| authorships[3].author.id | https://openalex.org/A5112317185 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hatsuko Nasu |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3123035732 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, Hamamatsu University School of Medicine, Shizuoka, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I3123035732 |
| authorships[3].institutions[0].ror | https://ror.org/00ndx3g44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3123035732 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Hamamatsu University School of Medicine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hatsuko Nasu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, Hamamatsu University School of Medicine, Shizuoka, Japan |
| authorships[4].author.id | https://openalex.org/A5024974585 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tatsuya Igarashi |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210136786 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, Fujieda Municipal General Hospital, Shizuoka, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I4210136786 |
| authorships[4].institutions[0].ror | https://ror.org/03q01be91 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210136786 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Fujieda Municipal General Hospital |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tatsuya Igarashi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, Fujieda Municipal General Hospital, Shizuoka, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial intelligence computer-aided detection enhances synthesized mammograms: comparison with original digital mammograms alone and in combination with tomosynthesis images in an experimental setting |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W1993288162, https://openalex.org/W4294145423, https://openalex.org/W2146231501, https://openalex.org/W2909702310, https://openalex.org/W2039863152, https://openalex.org/W1808333143, https://openalex.org/W2535097681, https://openalex.org/W4292939513, https://openalex.org/W4294839427, https://openalex.org/W2307539472 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s12282-022-01396-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S37889505 |
| best_oa_location.source.issn | 1340-6868, 1880-4233 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1340-6868 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Breast Cancer |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Breast Cancer |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s12282-022-01396-4 |
| primary_location.id | doi:10.1007/s12282-022-01396-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S37889505 |
| primary_location.source.issn | 1340-6868, 1880-4233 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1340-6868 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Breast Cancer |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12282-022-01396-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Breast Cancer |
| primary_location.landing_page_url | https://doi.org/10.1007/s12282-022-01396-4 |
| publication_date | 2022-08-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3116889151, https://openalex.org/W2996762549, https://openalex.org/W3164411362, https://openalex.org/W3208361557, https://openalex.org/W3185073121, https://openalex.org/W2169331774, https://openalex.org/W2288744119, https://openalex.org/W2745472269, https://openalex.org/W3003812760, https://openalex.org/W3157299848, https://openalex.org/W2796261703, https://openalex.org/W2968437699, https://openalex.org/W2905641156, https://openalex.org/W2766061684, https://openalex.org/W2765666676, https://openalex.org/W2808246205, https://openalex.org/W2963418739, https://openalex.org/W3164056063, https://openalex.org/W2967820996, https://openalex.org/W3045607691, https://openalex.org/W2130017212, https://openalex.org/W3215912632, https://openalex.org/W2149458995, https://openalex.org/W2896522127, https://openalex.org/W3181799331, https://openalex.org/W2184864765, https://openalex.org/W4225522865, https://openalex.org/W2610326795 |
| referenced_works_count | 28 |
| abstract_inverted_index.( | 62, 69, 178, 199, 220 |
| abstract_inverted_index.+ | 106, 112, 153, 159, 210, 218, 253, 259 |
| abstract_inverted_index.= | 64, 71, 180, 201, 222 |
| abstract_inverted_index.P | 179, 200, 221 |
| abstract_inverted_index.n | 63, 70 |
| abstract_inverted_index.4) | 65 |
| abstract_inverted_index.83 | 76 |
| abstract_inverted_index.84 | 74 |
| abstract_inverted_index.AI | 102, 109, 149, 156, 172, 207, 240, 250 |
| abstract_inverted_index.DM | 40, 105, 152, 194, 217, 247, 258 |
| abstract_inverted_index.It | 2 |
| abstract_inverted_index.SM | 111, 158, 174, 192, 209, 242, 252 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.We | 56 |
| abstract_inverted_index.an | 52 |
| abstract_inverted_index.be | 12 |
| abstract_inverted_index.in | 17, 43, 51, 73, 135 |
| abstract_inverted_index.of | 27, 39, 60, 116, 118, 171, 184, 191, 216, 234 |
| abstract_inverted_index.on | 145, 227 |
| abstract_inverted_index.or | 42, 83 |
| abstract_inverted_index.to | 246, 257 |
| abstract_inverted_index.(AI | 34 |
| abstract_inverted_index.221 | 81 |
| abstract_inverted_index.AUC | 142, 170, 205 |
| abstract_inverted_index.CAD | 35, 103, 110, 150, 157, 173, 208, 241, 251 |
| abstract_inverted_index.DBT | 160, 211, 219, 254, 260 |
| abstract_inverted_index.DM, | 101, 148 |
| abstract_inverted_index.DM. | 185 |
| abstract_inverted_index.For | 186 |
| abstract_inverted_index.POM | 146 |
| abstract_inverted_index.ROC | 224 |
| abstract_inverted_index.SM, | 104, 151 |
| abstract_inverted_index.The | 114, 140, 168, 203 |
| abstract_inverted_index.and | 20, 66, 80, 108, 121, 155, 165, 193 |
| abstract_inverted_index.but | 261 |
| abstract_inverted_index.can | 11 |
| abstract_inverted_index.did | 195 |
| abstract_inverted_index.for | 147, 206 |
| abstract_inverted_index.not | 196, 262 |
| abstract_inverted_index.the | 58, 129, 136, 189, 228, 235 |
| abstract_inverted_index.was | 94, 175, 212, 244, 255 |
| abstract_inverted_index.DBT, | 107, 154 |
| abstract_inverted_index.DBT. | 113 |
| abstract_inverted_index.Each | 92 |
| abstract_inverted_index.SMs) | 36 |
| abstract_inverted_index.both | 18 |
| abstract_inverted_index.four | 98 |
| abstract_inverted_index.mean | 141, 169, 204 |
| abstract_inverted_index.than | 182, 214 |
| abstract_inverted_index.that | 38, 183, 215 |
| abstract_inverted_index.were | 124, 161 |
| abstract_inverted_index.with | 14, 37, 45, 86, 97 |
| abstract_inverted_index.(AUC) | 134 |
| abstract_inverted_index.(DBT) | 49 |
| abstract_inverted_index.(DMs) | 10 |
| abstract_inverted_index.(POM) | 120 |
| abstract_inverted_index.388), | 72 |
| abstract_inverted_index.Also, | 249 |
| abstract_inverted_index.after | 89 |
| abstract_inverted_index.alone | 41, 243 |
| abstract_inverted_index.areas | 127 |
| abstract_inverted_index.based | 144, 226 |
| abstract_inverted_index.cases | 85 |
| abstract_inverted_index.curve | 133 |
| abstract_inverted_index.under | 128 |
| abstract_inverted_index.using | 126 |
| abstract_inverted_index.0.002) | 181 |
| abstract_inverted_index.0.871, | 162 |
| abstract_inverted_index.0.895, | 164 |
| abstract_inverted_index.0.902, | 163 |
| abstract_inverted_index.0.909, | 166 |
| abstract_inverted_index.1-year | 90 |
| abstract_inverted_index.alone. | 248 |
| abstract_inverted_index.benign | 78, 84 |
| abstract_inverted_index.breast | 47 |
| abstract_inverted_index.curves | 225 |
| abstract_inverted_index.differ | 197 |
| abstract_inverted_index.higher | 177, 213 |
| abstract_inverted_index.images | 50 |
| abstract_inverted_index.modes: | 100 |
| abstract_inverted_index.normal | 82 |
| abstract_inverted_index.reader | 25 |
| abstract_inverted_index.showed | 231 |
| abstract_inverted_index.values | 143 |
| abstract_inverted_index.0.082). | 223 |
| abstract_inverted_index.0.204). | 202 |
| abstract_inverted_index.Methods | 55 |
| abstract_inverted_index.Results | 139 |
| abstract_inverted_index.compare | 24 |
| abstract_inverted_index.digital | 8, 46 |
| abstract_inverted_index.levels. | 238 |
| abstract_inverted_index.overall | 236 |
| abstract_inverted_index.ratings | 123, 230 |
| abstract_inverted_index.reading | 67, 93, 99 |
| abstract_inverted_index.remains | 3 |
| abstract_inverted_index.results | 88 |
| abstract_inverted_index.similar | 232 |
| abstract_inverted_index.unclear | 4 |
| abstract_inverted_index.whether | 5 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.cancers, | 75 |
| abstract_inverted_index.compared | 57 |
| abstract_inverted_index.lesions, | 79, 188 |
| abstract_inverted_index.negative | 87 |
| abstract_inverted_index.original | 6 |
| abstract_inverted_index.receiver | 130 |
| abstract_inverted_index.replaced | 13 |
| abstract_inverted_index.setting. | 54 |
| abstract_inverted_index.superior | 245, 256 |
| abstract_inverted_index.analysis. | 138 |
| abstract_inverted_index.detection | 31 |
| abstract_inverted_index.evaluated | 125 |
| abstract_inverted_index.multicase | 68 |
| abstract_inverted_index.operating | 131 |
| abstract_inverted_index.proximity | 233 |
| abstract_inverted_index.screening | 19 |
| abstract_inverted_index.settings. | 22 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.artificial | 28 |
| abstract_inverted_index.diagnostic | 21 |
| abstract_inverted_index.follow-up. | 91 |
| abstract_inverted_index.full-field | 7 |
| abstract_inverted_index.malignancy | 119 |
| abstract_inverted_index.mammograms | 9, 16, 33 |
| abstract_inverted_index.Conclusions | 239 |
| abstract_inverted_index.combination | 44 |
| abstract_inverted_index.interpreted | 96 |
| abstract_inverted_index.multireader | 61 |
| abstract_inverted_index.performance | 26, 59, 237 |
| abstract_inverted_index.probability | 117 |
| abstract_inverted_index.sensitivity | 190 |
| abstract_inverted_index.synthesized | 15, 32 |
| abstract_inverted_index.experimental | 53 |
| abstract_inverted_index.intelligence | 29 |
| abstract_inverted_index.significant. | 264 |
| abstract_inverted_index.biopsy-proven | 77 |
| abstract_inverted_index.calcification | 187 |
| abstract_inverted_index.five-category | 122, 229 |
| abstract_inverted_index.independently | 95 |
| abstract_inverted_index.random-reader | 137 |
| abstract_inverted_index.respectively. | 167 |
| abstract_inverted_index.significantly | 176, 198 |
| abstract_inverted_index.statistically | 263 |
| abstract_inverted_index.tomosynthesis | 48 |
| abstract_inverted_index.characteristic | 132 |
| abstract_inverted_index.computer-aided | 30 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5050825345 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210088324 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.72188371 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |