Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fdata.2024.1402926
Background Leukemia is the 11 th most prevalent type of cancer worldwide, with acute myeloid leukemia (AML) being the most frequent malignant blood malignancy in adults. Microscopic blood tests are the most common methods for identifying leukemia subtypes. An automated optical image-processing system using artificial intelligence (AI) has recently been applied to facilitate clinical decision-making. Aim To evaluate the performance of all AI-based approaches for the detection and diagnosis of acute myeloid leukemia (AML). Methods Medical databases including PubMed, Web of Science, and Scopus were searched until December 2023. We used the “metafor” and “metagen” libraries in R to analyze the different models used in the studies. Accuracy and sensitivity were the primary outcome measures. Results Ten studies were included in our review and meta-analysis, conducted between 2016 and 2023. Most deep-learning models have been utilized, including convolutional neural networks (CNNs). The common- and random-effects models had accuracies of 1.0000 [0.9999; 1.0001] and 0.9557 [0.9312, and 0.9802], respectively. The common and random effects models had high sensitivity values of 1.0000 and 0.8581, respectively, indicating that the machine learning models in this study can accurately detect true-positive leukemia cases. Studies have shown substantial variations in accuracy and sensitivity, as shown by the Q values and I 2 statistics. Conclusion Our systematic review and meta-analysis found an overall high accuracy and sensitivity of AI models in correctly identifying true-positive AML cases. Future research should focus on unifying reporting methods and performance assessment metrics of AI-based diagnostics. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails , CRD42024501980.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3389/fdata.2024.1402926
- https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdf
- OA Status
- gold
- Cited By
- 5
- References
- 87
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406541874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406541874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fdata.2024.1402926Digital Object Identifier
- Title
-
Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysisWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-17Full publication date if available
- Authors
-
Feras Al‐Obeidat, Wael Hafez, Asrar Rashid, Mahir Jallo, Munier Gador, Iván Chérrez-Ojeda, Daniel Simancas‐RacinesList of authors in order
- Landing page
-
https://doi.org/10.3389/fdata.2024.1402926Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdfDirect OA link when available
- Concepts
-
Myeloid leukemia, Meta-analysis, Medicine, Pathology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
87Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406541874 |
|---|---|
| doi | https://doi.org/10.3389/fdata.2024.1402926 |
| ids.doi | https://doi.org/10.3389/fdata.2024.1402926 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39897067 |
| ids.openalex | https://openalex.org/W4406541874 |
| fwci | 23.86703655 |
| type | review |
| title | Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 1402926 |
| biblio.first_page | 1402926 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9639000296592712 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| concepts[0].id | https://openalex.org/C2778729363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.777071475982666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11688946 |
| concepts[0].display_name | Myeloid leukemia |
| concepts[1].id | https://openalex.org/C95190672 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7164645195007324 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[1].display_name | Meta-analysis |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4879140555858612 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C142724271 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3843291103839874 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[3].display_name | Pathology |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.25281959772109985 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/myeloid-leukemia |
| keywords[0].score | 0.777071475982666 |
| keywords[0].display_name | Myeloid leukemia |
| keywords[1].id | https://openalex.org/keywords/meta-analysis |
| keywords[1].score | 0.7164645195007324 |
| keywords[1].display_name | Meta-analysis |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.4879140555858612 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/pathology |
| keywords[3].score | 0.3843291103839874 |
| keywords[3].display_name | Pathology |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.25281959772109985 |
| keywords[4].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.3389/fdata.2024.1402926 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201220 |
| locations[0].source.issn | 2624-909X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-909X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Big Data |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Big Data |
| locations[0].landing_page_url | https://doi.org/10.3389/fdata.2024.1402926 |
| locations[1].id | pmid:39897067 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in big data |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39897067 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11782132 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Big Data |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11782132 |
| locations[3].id | pmh:oai:doaj.org/article:0507181510bc44cda5b68a569d582ce8 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Big Data, Vol 7 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/0507181510bc44cda5b68a569d582ce8 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5037131693 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6941-6555 |
| authorships[0].author.display_name | Feras Al‐Obeidat |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91044093 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates |
| authorships[0].institutions[0].id | https://openalex.org/I91044093 |
| authorships[0].institutions[0].ror | https://ror.org/03snqfa66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91044093 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | Zayed University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feras Al-Obeidat |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates |
| authorships[1].author.id | https://openalex.org/A5054456648 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1203-0808 |
| authorships[1].author.display_name | Wael Hafez |
| authorships[1].countries | EG |
| authorships[1].affiliations[0].raw_affiliation_string | NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210131959 |
| authorships[1].affiliations[1].raw_affiliation_string | Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt |
| authorships[1].institutions[0].id | https://openalex.org/I4210131959 |
| authorships[1].institutions[0].ror | https://ror.org/02n85j827 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131959 |
| authorships[1].institutions[0].country_code | EG |
| authorships[1].institutions[0].display_name | National Research Centre |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wael Hafez |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt, NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5075481881 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6108-9289 |
| authorships[2].author.display_name | Asrar Rashid |
| authorships[2].affiliations[0].raw_affiliation_string | NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Asrar Rashid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[3].author.id | https://openalex.org/A5043351124 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8128-054X |
| authorships[3].author.display_name | Mahir Jallo |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163074564 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Clinical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates |
| authorships[3].institutions[0].id | https://openalex.org/I163074564 |
| authorships[3].institutions[0].ror | https://ror.org/02kaerj47 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163074564 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | Gulf Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mahir Khalil Jallo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Clinical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates |
| authorships[4].author.id | https://openalex.org/A5115924740 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Munier Gador |
| authorships[4].affiliations[0].raw_affiliation_string | NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Munier Gador |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | NMC Royal Hospital, Abu Dhabi, United Arab Emirates |
| authorships[5].author.id | https://openalex.org/A5017345763 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1610-239X |
| authorships[5].author.display_name | Iván Chérrez-Ojeda |
| authorships[5].countries | EC |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3132284232 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Allergy and Immunology, Universidad Espiritu Santo, Samborondon, Ecuador |
| authorships[5].affiliations[1].raw_affiliation_string | Respiralab Research Group, Guayaquil, Ecuador |
| authorships[5].institutions[0].id | https://openalex.org/I3132284232 |
| authorships[5].institutions[0].ror | https://ror.org/00b210x50 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3132284232 |
| authorships[5].institutions[0].country_code | EC |
| authorships[5].institutions[0].display_name | Universidad de Especialidades Espíritu Santo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ivan Cherrez-Ojeda |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Allergy and Immunology, Universidad Espiritu Santo, Samborondon, Ecuador, Respiralab Research Group, Guayaquil, Ecuador |
| authorships[6].author.id | https://openalex.org/A5051753481 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3641-1501 |
| authorships[6].author.display_name | Daniel Simancas‐Racines |
| authorships[6].countries | EC |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210091861 |
| authorships[6].affiliations[0].raw_affiliation_string | Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador |
| authorships[6].institutions[0].id | https://openalex.org/I4210091861 |
| authorships[6].institutions[0].ror | https://ror.org/00dmdt028 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210091861 |
| authorships[6].institutions[0].country_code | EC |
| authorships[6].institutions[0].display_name | Universidad UTE |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Daniel Simancas-Racines |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fdata.2024.1402926 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201220 |
| best_oa_location.source.issn | 2624-909X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-909X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Big Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Big Data |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fdata.2024.1402926 |
| primary_location.id | doi:10.3389/fdata.2024.1402926 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201220 |
| primary_location.source.issn | 2624-909X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-909X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Big Data |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1402926/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Big Data |
| primary_location.landing_page_url | https://doi.org/10.3389/fdata.2024.1402926 |
| publication_date | 2025-01-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4321507483, https://openalex.org/W4389137515, https://openalex.org/W3150212014, https://openalex.org/W2969340476, https://openalex.org/W3091713371, https://openalex.org/W3140854437, https://openalex.org/W4385847765, https://openalex.org/W2229491714, https://openalex.org/W3092261462, https://openalex.org/W4283259222, https://openalex.org/W2080266381, https://openalex.org/W2894136595, https://openalex.org/W6704513472, https://openalex.org/W3111295039, https://openalex.org/W2889646458, https://openalex.org/W3023211159, https://openalex.org/W6862906930, https://openalex.org/W4365796764, https://openalex.org/W4385184124, https://openalex.org/W2937186836, https://openalex.org/W4362612855, https://openalex.org/W3162474807, https://openalex.org/W2799229333, https://openalex.org/W4389397838, https://openalex.org/W4293869130, https://openalex.org/W3173704035, https://openalex.org/W4282929420, https://openalex.org/W4402012264, https://openalex.org/W2972621596, https://openalex.org/W2194775991, https://openalex.org/W2792278465, https://openalex.org/W2917675508, https://openalex.org/W6802781638, https://openalex.org/W2752782242, https://openalex.org/W2945472816, https://openalex.org/W2963446712, https://openalex.org/W4220980752, https://openalex.org/W4386187846, https://openalex.org/W4220665389, https://openalex.org/W2498418174, https://openalex.org/W2109218456, https://openalex.org/W3014273114, https://openalex.org/W2938115382, https://openalex.org/W2618530766, https://openalex.org/W4388459526, https://openalex.org/W2920046378, https://openalex.org/W2040933434, https://openalex.org/W2981030558, https://openalex.org/W4318677156, https://openalex.org/W3011248617, https://openalex.org/W3209290189, https://openalex.org/W2537189671, https://openalex.org/W2578555672, https://openalex.org/W4243420059, https://openalex.org/W4236355884, https://openalex.org/W2736844740, https://openalex.org/W3194768939, https://openalex.org/W4361275400, https://openalex.org/W4296745041, https://openalex.org/W3194730353, https://openalex.org/W4389340375, https://openalex.org/W2135107501, https://openalex.org/W4213004968, https://openalex.org/W4393195412, https://openalex.org/W4293733701, https://openalex.org/W3033545112, https://openalex.org/W3128646645, https://openalex.org/W2097117768, https://openalex.org/W6762718338, https://openalex.org/W3082059448, https://openalex.org/W2906578628, https://openalex.org/W4319659936, https://openalex.org/W6784451707, https://openalex.org/W2615003530, https://openalex.org/W3126621872, https://openalex.org/W4317475364, https://openalex.org/W4280556240, https://openalex.org/W4390739921, https://openalex.org/W3173946558, https://openalex.org/W4393085415, https://openalex.org/W4224690709, https://openalex.org/W3093951581, https://openalex.org/W3051995256, https://openalex.org/W4400887012, https://openalex.org/W2341883776, https://openalex.org/W4393034815, https://openalex.org/W2942056403 |
| referenced_works_count | 87 |
| abstract_inverted_index., | 248 |
| abstract_inverted_index.2 | 205 |
| abstract_inverted_index.I | 204 |
| abstract_inverted_index.Q | 201 |
| abstract_inverted_index.R | 97 |
| abstract_inverted_index.11 | 4 |
| abstract_inverted_index.AI | 221 |
| abstract_inverted_index.An | 38 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 89 |
| abstract_inverted_index.an | 214 |
| abstract_inverted_index.as | 197 |
| abstract_inverted_index.by | 199 |
| abstract_inverted_index.in | 24, 96, 104, 120, 179, 193, 223 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 9, 60, 69, 80, 148, 168, 220, 241 |
| abstract_inverted_index.on | 233 |
| abstract_inverted_index.th | 5 |
| abstract_inverted_index.to | 51, 98 |
| abstract_inverted_index.AML | 227 |
| abstract_inverted_index.Aim | 55 |
| abstract_inverted_index.Our | 208 |
| abstract_inverted_index.Ten | 116 |
| abstract_inverted_index.The | 141, 158 |
| abstract_inverted_index.Web | 79 |
| abstract_inverted_index.all | 61 |
| abstract_inverted_index.and | 67, 82, 93, 108, 123, 128, 143, 152, 155, 160, 170, 195, 203, 211, 218, 237 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.can | 182 |
| abstract_inverted_index.for | 34, 64 |
| abstract_inverted_index.had | 146, 164 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 3, 18, 30, 58, 65, 91, 100, 105, 111, 175, 200 |
| abstract_inverted_index.(AI) | 46 |
| abstract_inverted_index.2016 | 127 |
| abstract_inverted_index.Most | 130 |
| abstract_inverted_index.been | 49, 134 |
| abstract_inverted_index.have | 133, 189 |
| abstract_inverted_index.high | 165, 216 |
| abstract_inverted_index.most | 6, 19, 31 |
| abstract_inverted_index.that | 174 |
| abstract_inverted_index.this | 180 |
| abstract_inverted_index.type | 8 |
| abstract_inverted_index.used | 90, 103 |
| abstract_inverted_index.were | 84, 110, 118 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.(AML) | 16 |
| abstract_inverted_index.2023. | 88, 129 |
| abstract_inverted_index.acute | 13, 70 |
| abstract_inverted_index.being | 17 |
| abstract_inverted_index.blood | 22, 27 |
| abstract_inverted_index.focus | 232 |
| abstract_inverted_index.found | 213 |
| abstract_inverted_index.shown | 190, 198 |
| abstract_inverted_index.study | 181 |
| abstract_inverted_index.tests | 28 |
| abstract_inverted_index.until | 86 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.(AML). | 73 |
| abstract_inverted_index.0.9557 | 153 |
| abstract_inverted_index.1.0000 | 149, 169 |
| abstract_inverted_index.Future | 229 |
| abstract_inverted_index.Scopus | 83 |
| abstract_inverted_index.cancer | 10 |
| abstract_inverted_index.cases. | 187, 228 |
| abstract_inverted_index.common | 32, 159 |
| abstract_inverted_index.detect | 184 |
| abstract_inverted_index.models | 102, 132, 145, 163, 178, 222 |
| abstract_inverted_index.neural | 138 |
| abstract_inverted_index.random | 161 |
| abstract_inverted_index.review | 122, 210, 245 |
| abstract_inverted_index.should | 231 |
| abstract_inverted_index.system | 42 |
| abstract_inverted_index.values | 167, 202 |
| abstract_inverted_index.(CNNs). | 140 |
| abstract_inverted_index.0.8581, | 171 |
| abstract_inverted_index.1.0001] | 151 |
| abstract_inverted_index.Medical | 75 |
| abstract_inverted_index.Methods | 74 |
| abstract_inverted_index.PubMed, | 78 |
| abstract_inverted_index.Results | 115 |
| abstract_inverted_index.Studies | 188 |
| abstract_inverted_index.adults. | 25 |
| abstract_inverted_index.analyze | 99 |
| abstract_inverted_index.applied | 50 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.common- | 142 |
| abstract_inverted_index.effects | 162 |
| abstract_inverted_index.machine | 176 |
| abstract_inverted_index.methods | 33, 236 |
| abstract_inverted_index.metrics | 240 |
| abstract_inverted_index.myeloid | 14, 71 |
| abstract_inverted_index.optical | 40 |
| abstract_inverted_index.outcome | 113 |
| abstract_inverted_index.overall | 215 |
| abstract_inverted_index.primary | 112 |
| abstract_inverted_index.studies | 117 |
| abstract_inverted_index.0.9802], | 156 |
| abstract_inverted_index.AI-based | 62, 242 |
| abstract_inverted_index.Accuracy | 107 |
| abstract_inverted_index.December | 87 |
| abstract_inverted_index.Leukemia | 1 |
| abstract_inverted_index.Science, | 81 |
| abstract_inverted_index.[0.9312, | 154 |
| abstract_inverted_index.[0.9999; | 150 |
| abstract_inverted_index.accuracy | 194, 217 |
| abstract_inverted_index.clinical | 53 |
| abstract_inverted_index.evaluate | 57 |
| abstract_inverted_index.frequent | 20 |
| abstract_inverted_index.included | 119 |
| abstract_inverted_index.learning | 177 |
| abstract_inverted_index.leukemia | 15, 36, 72, 186 |
| abstract_inverted_index.networks | 139 |
| abstract_inverted_index.recently | 48 |
| abstract_inverted_index.research | 230 |
| abstract_inverted_index.searched | 85 |
| abstract_inverted_index.studies. | 106 |
| abstract_inverted_index.unifying | 234 |
| abstract_inverted_index.automated | 39 |
| abstract_inverted_index.conducted | 125 |
| abstract_inverted_index.correctly | 224 |
| abstract_inverted_index.databases | 76 |
| abstract_inverted_index.detection | 66 |
| abstract_inverted_index.diagnosis | 68 |
| abstract_inverted_index.different | 101 |
| abstract_inverted_index.including | 77, 136 |
| abstract_inverted_index.libraries | 95 |
| abstract_inverted_index.malignant | 21 |
| abstract_inverted_index.measures. | 114 |
| abstract_inverted_index.prevalent | 7 |
| abstract_inverted_index.reporting | 235 |
| abstract_inverted_index.subtypes. | 37 |
| abstract_inverted_index.utilized, | 135 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Conclusion | 207 |
| abstract_inverted_index.Systematic | 244 |
| abstract_inverted_index.accuracies | 147 |
| abstract_inverted_index.accurately | 183 |
| abstract_inverted_index.approaches | 63 |
| abstract_inverted_index.artificial | 44 |
| abstract_inverted_index.assessment | 239 |
| abstract_inverted_index.facilitate | 52 |
| abstract_inverted_index.indicating | 173 |
| abstract_inverted_index.malignancy | 23 |
| abstract_inverted_index.systematic | 209 |
| abstract_inverted_index.variations | 192 |
| abstract_inverted_index.worldwide, | 11 |
| abstract_inverted_index.Microscopic | 26 |
| abstract_inverted_index.identifying | 35, 225 |
| abstract_inverted_index.performance | 59, 238 |
| abstract_inverted_index.sensitivity | 109, 166, 219 |
| abstract_inverted_index.statistics. | 206 |
| abstract_inverted_index.substantial | 191 |
| abstract_inverted_index.diagnostics. | 243 |
| abstract_inverted_index.intelligence | 45 |
| abstract_inverted_index.registration | 246 |
| abstract_inverted_index.sensitivity, | 196 |
| abstract_inverted_index.convolutional | 137 |
| abstract_inverted_index.deep-learning | 131 |
| abstract_inverted_index.meta-analysis | 212 |
| abstract_inverted_index.respectively, | 172 |
| abstract_inverted_index.respectively. | 157 |
| abstract_inverted_index.true-positive | 185, 226 |
| abstract_inverted_index.“metafor” | 92 |
| abstract_inverted_index.“metagen” | 94 |
| abstract_inverted_index.meta-analysis, | 124 |
| abstract_inverted_index.random-effects | 144 |
| abstract_inverted_index.CRD42024501980. | 249 |
| abstract_inverted_index.decision-making. | 54 |
| abstract_inverted_index.image-processing | 41 |
| abstract_inverted_index.https://www.crd.york.ac.uk/prospero/#recordDetails | 247 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5054456648 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210131959 |
| citation_normalized_percentile.value | 0.98011186 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |