Artificial Intelligence in Oral Diagnosis: Detecting Coated Tongue with Convolutional Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics15081024
Background/Objectives: Coated tongue is a common oral condition with notable clinical relevance, often overlooked due to its asymptomatic nature. Its presence may reflect poor oral hygiene and can serve as an early indicator of underlying systemic diseases. This study aimed to develop a robust diagnostic model utilizing convolutional neural networks and machine learning classifiers to improve the detection of coated tongue lesions. Methods: A total of 200 tongue images (100 coated and 100 healthy) were analyzed. Images were acquired using a DSLR camera (Nikon D5500 with Sigma Macro 105 mm lens, Nikon, Tokyo, Japan) under standardized daylight conditions. Following preprocessing, feature vectors were extracted using CNN architectures (VGG16, VGG19, ResNet, MobileNet, and NasNet) and classified using Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP) classifiers. Performance metrics included sensitivity, specificity, accuracy, and F1 score. Results: The SVM + VGG19 hybrid model achieved the best performance among all tested configurations, with a sensitivity of 82.6%, specificity of 88.23%, accuracy of 85%, and an F1 score of 86.36%. Conclusions: The SVM + VGG19 model demonstrated high accuracy and reliability in diagnosing coated tongue lesions, highlighting its potential as an effective clinical decision support tool. Future research with larger datasets may further enhance model robustness and applicability in diverse populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics15081024
- https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437
- OA Status
- gold
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409546651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409546651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics15081024Digital Object Identifier
- Title
-
Artificial Intelligence in Oral Diagnosis: Detecting Coated Tongue with Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-17Full publication date if available
- Authors
-
Sümeyye Coşgun Baybars, Ştefan Ţălu, Çağla Danacı, Seda Arslan TuncerList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics15081024Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437Direct OA link when available
- Concepts
-
Artificial intelligence, Support vector machine, Convolutional neural network, Computer science, Preprocessor, Pattern recognition (psychology), Deep learning, Machine learning, Robustness (evolution), Biology, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409546651 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics15081024 |
| ids.doi | https://doi.org/10.3390/diagnostics15081024 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40310445 |
| ids.openalex | https://openalex.org/W4409546651 |
| fwci | 3.54675192 |
| type | article |
| title | Artificial Intelligence in Oral Diagnosis: Detecting Coated Tongue with Convolutional Neural Networks |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | 1024 |
| biblio.first_page | 1024 |
| topics[0].id | https://openalex.org/T10515 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.977400004863739 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1306 |
| topics[0].subfield.display_name | Cancer Research |
| topics[0].display_name | Cancer-related molecular mechanisms research |
| topics[1].id | https://openalex.org/T10863 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Voice and Speech Disorders |
| topics[2].id | https://openalex.org/T11452 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9746000170707703 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3506 |
| topics[2].subfield.display_name | Periodontics |
| topics[2].display_name | Oral Health Pathology and Treatment |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8163789510726929 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7378877401351929 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.727852463722229 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6659314036369324 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C34736171 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6336119771003723 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[4].display_name | Preprocessor |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5951164364814758 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46030193567276 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45725032687187195 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C63479239 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4361904561519623 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[8].display_name | Robustness (evolution) |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09040656685829163 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8163789510726929 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7378877401351929 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.727852463722229 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6659314036369324 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/preprocessor |
| keywords[4].score | 0.6336119771003723 |
| keywords[4].display_name | Preprocessor |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5951164364814758 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.46030193567276 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.45725032687187195 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/robustness |
| keywords[8].score | 0.4361904561519623 |
| keywords[8].display_name | Robustness (evolution) |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.09040656685829163 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/diagnostics15081024 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics15081024 |
| locations[1].id | pmid:40310445 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40310445 |
| locations[2].id | pmh:oai:doaj.org/article:b4a8fe797d25449da9913ad2587957b6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics, Vol 15, Iss 8, p 1024 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/b4a8fe797d25449da9913ad2587957b6 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12025637 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12025637 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5062235394 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4166-3754 |
| authorships[0].author.display_name | Sümeyye Coşgun Baybars |
| authorships[0].countries | TR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143396566 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Firat University, Elazığ 23119, Turkey |
| authorships[0].institutions[0].id | https://openalex.org/I143396566 |
| authorships[0].institutions[0].ror | https://ror.org/05teb7b63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143396566 |
| authorships[0].institutions[0].country_code | TR |
| authorships[0].institutions[0].display_name | Fırat University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sümeyye Coşgun Baybars |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Firat University, Elazığ 23119, Turkey |
| authorships[1].author.id | https://openalex.org/A5056394507 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1311-7657 |
| authorships[1].author.display_name | Ştefan Ţălu |
| authorships[1].countries | TR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143396566 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Firat University, Elazığ 23119, Turkey |
| authorships[1].institutions[0].id | https://openalex.org/I143396566 |
| authorships[1].institutions[0].ror | https://ror.org/05teb7b63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143396566 |
| authorships[1].institutions[0].country_code | TR |
| authorships[1].institutions[0].display_name | Fırat University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Merve Hacer Talu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Firat University, Elazığ 23119, Turkey |
| authorships[2].author.id | https://openalex.org/A5011446977 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2414-1310 |
| authorships[2].author.display_name | Çağla Danacı |
| authorships[2].countries | TR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143396566 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Software Engineering, Faculty of Engineering, Firat University, Elazığ 23119, Turkey |
| authorships[2].institutions[0].id | https://openalex.org/I143396566 |
| authorships[2].institutions[0].ror | https://ror.org/05teb7b63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143396566 |
| authorships[2].institutions[0].country_code | TR |
| authorships[2].institutions[0].display_name | Fırat University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Çağla Danacı |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Software Engineering, Faculty of Engineering, Firat University, Elazığ 23119, Turkey |
| authorships[3].author.id | https://openalex.org/A5004319915 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6472-8306 |
| authorships[3].author.display_name | Seda Arslan Tuncer |
| authorships[3].countries | TR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143396566 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Software Engineering, Faculty of Engineering, Firat University, Elazığ 23119, Turkey |
| authorships[3].institutions[0].id | https://openalex.org/I143396566 |
| authorships[3].institutions[0].ror | https://ror.org/05teb7b63 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143396566 |
| authorships[3].institutions[0].country_code | TR |
| authorships[3].institutions[0].display_name | Fırat University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Seda Arslan Tuncer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Software Engineering, Faculty of Engineering, Firat University, Elazığ 23119, Turkey |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial Intelligence in Oral Diagnosis: Detecting Coated Tongue with Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10515 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.977400004863739 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1306 |
| primary_topic.subfield.display_name | Cancer Research |
| primary_topic.display_name | Cancer-related molecular mechanisms research |
| related_works | https://openalex.org/W2090763504, https://openalex.org/W4375867731, https://openalex.org/W4391621807, https://openalex.org/W148178222, https://openalex.org/W2104657898, https://openalex.org/W1948992892, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/diagnostics15081024 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics15081024 |
| primary_location.id | doi:10.3390/diagnostics15081024 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/15/8/1024/pdf?version=1744882437 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics15081024 |
| publication_date | 2025-04-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2780451487, https://openalex.org/W2143242932, https://openalex.org/W1656446303, https://openalex.org/W2080358767, https://openalex.org/W2971087358, https://openalex.org/W2470183763, https://openalex.org/W4292838356, https://openalex.org/W2809254203, https://openalex.org/W4323566130, https://openalex.org/W2555096873, https://openalex.org/W2801609445, https://openalex.org/W3016417837, https://openalex.org/W2886403459, https://openalex.org/W3200246142, https://openalex.org/W3036570640, https://openalex.org/W2044097773, https://openalex.org/W2545185088, https://openalex.org/W4392585310, https://openalex.org/W4387082826, https://openalex.org/W1569103839, https://openalex.org/W6794548539, https://openalex.org/W4392564091, https://openalex.org/W4220984360, https://openalex.org/W1670213974, https://openalex.org/W2946040156, https://openalex.org/W4404052130, https://openalex.org/W2924137487, https://openalex.org/W4292413469, https://openalex.org/W3107263686, https://openalex.org/W3015284486, https://openalex.org/W4408079427, https://openalex.org/W4391928629, https://openalex.org/W4402039968, https://openalex.org/W3158562326 |
| referenced_works_count | 34 |
| abstract_inverted_index.+ | 140, 172 |
| abstract_inverted_index.A | 63 |
| abstract_inverted_index.a | 4, 42, 80, 153 |
| abstract_inverted_index.F1 | 135, 165 |
| abstract_inverted_index.an | 30, 164, 189 |
| abstract_inverted_index.as | 29, 188 |
| abstract_inverted_index.in | 180, 207 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.mm | 89 |
| abstract_inverted_index.of | 33, 58, 65, 155, 158, 161, 167 |
| abstract_inverted_index.to | 15, 40, 54 |
| abstract_inverted_index.100 | 72 |
| abstract_inverted_index.105 | 88 |
| abstract_inverted_index.200 | 66 |
| abstract_inverted_index.CNN | 105 |
| abstract_inverted_index.Its | 19 |
| abstract_inverted_index.SVM | 139, 171 |
| abstract_inverted_index.The | 138, 170 |
| abstract_inverted_index.all | 149 |
| abstract_inverted_index.and | 26, 50, 71, 111, 113, 123, 134, 163, 178, 205 |
| abstract_inverted_index.can | 27 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.its | 16, 186 |
| abstract_inverted_index.may | 21, 200 |
| abstract_inverted_index.the | 56, 145 |
| abstract_inverted_index.(100 | 69 |
| abstract_inverted_index.85%, | 162 |
| abstract_inverted_index.DSLR | 81 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.best | 146 |
| abstract_inverted_index.high | 176 |
| abstract_inverted_index.oral | 6, 24 |
| abstract_inverted_index.poor | 23 |
| abstract_inverted_index.were | 74, 77, 102 |
| abstract_inverted_index.with | 8, 85, 152, 197 |
| abstract_inverted_index.(MLP) | 126 |
| abstract_inverted_index.D5500 | 84 |
| abstract_inverted_index.Macro | 87 |
| abstract_inverted_index.Sigma | 86 |
| abstract_inverted_index.VGG19 | 141, 173 |
| abstract_inverted_index.aimed | 39 |
| abstract_inverted_index.among | 148 |
| abstract_inverted_index.early | 31 |
| abstract_inverted_index.lens, | 90 |
| abstract_inverted_index.model | 45, 143, 174, 203 |
| abstract_inverted_index.often | 12 |
| abstract_inverted_index.score | 166 |
| abstract_inverted_index.serve | 28 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.tool. | 194 |
| abstract_inverted_index.total | 64 |
| abstract_inverted_index.under | 94 |
| abstract_inverted_index.using | 79, 104, 115 |
| abstract_inverted_index.(KNN), | 122 |
| abstract_inverted_index.(Nikon | 83 |
| abstract_inverted_index.(SVM), | 119 |
| abstract_inverted_index.82.6%, | 156 |
| abstract_inverted_index.Coated | 1 |
| abstract_inverted_index.Future | 195 |
| abstract_inverted_index.Images | 76 |
| abstract_inverted_index.Japan) | 93 |
| abstract_inverted_index.Nikon, | 91 |
| abstract_inverted_index.Tokyo, | 92 |
| abstract_inverted_index.VGG19, | 108 |
| abstract_inverted_index.Vector | 117 |
| abstract_inverted_index.camera | 82 |
| abstract_inverted_index.coated | 59, 70, 182 |
| abstract_inverted_index.common | 5 |
| abstract_inverted_index.hybrid | 142 |
| abstract_inverted_index.images | 68 |
| abstract_inverted_index.larger | 198 |
| abstract_inverted_index.neural | 48 |
| abstract_inverted_index.robust | 43 |
| abstract_inverted_index.score. | 136 |
| abstract_inverted_index.tested | 150 |
| abstract_inverted_index.tongue | 2, 60, 67, 183 |
| abstract_inverted_index.(VGG16, | 107 |
| abstract_inverted_index.86.36%. | 168 |
| abstract_inverted_index.88.23%, | 159 |
| abstract_inverted_index.Machine | 118 |
| abstract_inverted_index.NasNet) | 112 |
| abstract_inverted_index.ResNet, | 109 |
| abstract_inverted_index.Support | 116 |
| abstract_inverted_index.develop | 41 |
| abstract_inverted_index.diverse | 208 |
| abstract_inverted_index.enhance | 202 |
| abstract_inverted_index.feature | 100 |
| abstract_inverted_index.further | 201 |
| abstract_inverted_index.hygiene | 25 |
| abstract_inverted_index.improve | 55 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.metrics | 129 |
| abstract_inverted_index.nature. | 18 |
| abstract_inverted_index.notable | 9 |
| abstract_inverted_index.reflect | 22 |
| abstract_inverted_index.support | 193 |
| abstract_inverted_index.vectors | 101 |
| abstract_inverted_index.Methods: | 62 |
| abstract_inverted_index.Results: | 137 |
| abstract_inverted_index.accuracy | 160, 177 |
| abstract_inverted_index.achieved | 144 |
| abstract_inverted_index.acquired | 78 |
| abstract_inverted_index.clinical | 10, 191 |
| abstract_inverted_index.datasets | 199 |
| abstract_inverted_index.daylight | 96 |
| abstract_inverted_index.decision | 192 |
| abstract_inverted_index.healthy) | 73 |
| abstract_inverted_index.included | 130 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.lesions, | 184 |
| abstract_inverted_index.lesions. | 61 |
| abstract_inverted_index.networks | 49 |
| abstract_inverted_index.presence | 20 |
| abstract_inverted_index.research | 196 |
| abstract_inverted_index.systemic | 35 |
| abstract_inverted_index.Following | 98 |
| abstract_inverted_index.K-Nearest | 120 |
| abstract_inverted_index.Neighbors | 121 |
| abstract_inverted_index.accuracy, | 133 |
| abstract_inverted_index.analyzed. | 75 |
| abstract_inverted_index.condition | 7 |
| abstract_inverted_index.detection | 57 |
| abstract_inverted_index.diseases. | 36 |
| abstract_inverted_index.effective | 190 |
| abstract_inverted_index.extracted | 103 |
| abstract_inverted_index.indicator | 32 |
| abstract_inverted_index.potential | 187 |
| abstract_inverted_index.utilizing | 46 |
| abstract_inverted_index.MobileNet, | 110 |
| abstract_inverted_index.Perceptron | 125 |
| abstract_inverted_index.classified | 114 |
| abstract_inverted_index.diagnosing | 181 |
| abstract_inverted_index.diagnostic | 44 |
| abstract_inverted_index.overlooked | 13 |
| abstract_inverted_index.relevance, | 11 |
| abstract_inverted_index.robustness | 204 |
| abstract_inverted_index.underlying | 34 |
| abstract_inverted_index.Multi-Layer | 124 |
| abstract_inverted_index.Performance | 128 |
| abstract_inverted_index.classifiers | 53 |
| abstract_inverted_index.conditions. | 97 |
| abstract_inverted_index.performance | 147 |
| abstract_inverted_index.reliability | 179 |
| abstract_inverted_index.sensitivity | 154 |
| abstract_inverted_index.specificity | 157 |
| abstract_inverted_index.Conclusions: | 169 |
| abstract_inverted_index.asymptomatic | 17 |
| abstract_inverted_index.classifiers. | 127 |
| abstract_inverted_index.demonstrated | 175 |
| abstract_inverted_index.highlighting | 185 |
| abstract_inverted_index.populations. | 209 |
| abstract_inverted_index.sensitivity, | 131 |
| abstract_inverted_index.specificity, | 132 |
| abstract_inverted_index.standardized | 95 |
| abstract_inverted_index.applicability | 206 |
| abstract_inverted_index.architectures | 106 |
| abstract_inverted_index.convolutional | 47 |
| abstract_inverted_index.preprocessing, | 99 |
| abstract_inverted_index.configurations, | 151 |
| abstract_inverted_index.Background/Objectives: | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.81282138 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |