Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining Industry Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.4018/978-1-6684-3694-3.ch024
The implementation of artificial intelligence (AI), machine learning, and autonomous technologies in the mining industry started about a decade ago with autonomous trucks. Artificial intelligence, machine learning, and autonomous technologies provide many economic benefits for the mining industry through cost reduction, efficiency, and improving productivity, reducing exposure of workers to hazardous conditions, continuous production, and improved safety. However, the implementation of these technologies has faced economic, financial, technological, workforce, and social challenges. This article discusses the current status of AI, machine learning, and autonomous technologies implementation in the mining industry and highlights potential areas of future application. The article presents the results of interviews with some of the stakeholders in the industry and what their perceptions are about the threats, challenges, benefits, and potential impacts of these advanced technologies. The article also presents their views on the future of these technologies and what are some of the steps needed for successful implementation of these technologies in this sector.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.4018/978-1-6684-3694-3.ch024
- OA Status
- hybrid
- Cited By
- 7
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225603583
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225603583Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4018/978-1-6684-3694-3.ch024Digital Object Identifier
- Title
-
Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining IndustryWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-29Full publication date if available
- Authors
-
Zeshan Hyder, Keng Siau, Fiona Fui‐Hoon NahList of authors in order
- Landing page
-
https://doi.org/10.4018/978-1-6684-3694-3.ch024Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4018/978-1-6684-3694-3.ch024Direct OA link when available
- Concepts
-
Productivity, Emerging technologies, Workforce, Engineering, Engineering management, Artificial intelligence, Computer science, Risk analysis (engineering), Business, Political science, Economics, Macroeconomics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 2, 2022: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225603583 |
|---|---|
| doi | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| ids.doi | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| ids.openalex | https://openalex.org/W4225603583 |
| fwci | 2.69990351 |
| type | book-chapter |
| title | Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining Industry |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 492 |
| biblio.first_page | 478 |
| topics[0].id | https://openalex.org/T13065 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Mining Techniques and Economics |
| topics[1].id | https://openalex.org/T10809 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9879999756813049 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3614 |
| topics[1].subfield.display_name | Radiological and Ultrasound Technology |
| topics[1].display_name | Occupational Health and Safety Research |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9674999713897705 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C204983608 |
| concepts[0].level | 2 |
| concepts[0].score | 0.636936604976654 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2111958 |
| concepts[0].display_name | Productivity |
| concepts[1].id | https://openalex.org/C207267971 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5574197173118591 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q120208 |
| concepts[1].display_name | Emerging technologies |
| concepts[2].id | https://openalex.org/C2778139618 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4939764142036438 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q13440398 |
| concepts[2].display_name | Workforce |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4914911985397339 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| concepts[4].id | https://openalex.org/C110354214 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3615347146987915 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6314146 |
| concepts[4].display_name | Engineering management |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3602002263069153 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3379674553871155 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C112930515 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3342534303665161 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[7].display_name | Risk analysis (engineering) |
| concepts[8].id | https://openalex.org/C144133560 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2927781343460083 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[8].display_name | Business |
| concepts[9].id | https://openalex.org/C17744445 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08075356483459473 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[9].display_name | Political science |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C139719470 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[11].display_name | Macroeconomics |
| concepts[12].id | https://openalex.org/C199539241 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[12].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/productivity |
| keywords[0].score | 0.636936604976654 |
| keywords[0].display_name | Productivity |
| keywords[1].id | https://openalex.org/keywords/emerging-technologies |
| keywords[1].score | 0.5574197173118591 |
| keywords[1].display_name | Emerging technologies |
| keywords[2].id | https://openalex.org/keywords/workforce |
| keywords[2].score | 0.4939764142036438 |
| keywords[2].display_name | Workforce |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.4914911985397339 |
| keywords[3].display_name | Engineering |
| keywords[4].id | https://openalex.org/keywords/engineering-management |
| keywords[4].score | 0.3615347146987915 |
| keywords[4].display_name | Engineering management |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3602002263069153 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3379674553871155 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/risk-analysis |
| keywords[7].score | 0.3342534303665161 |
| keywords[7].display_name | Risk analysis (engineering) |
| keywords[8].id | https://openalex.org/keywords/business |
| keywords[8].score | 0.2927781343460083 |
| keywords[8].display_name | Business |
| keywords[9].id | https://openalex.org/keywords/political-science |
| keywords[9].score | 0.08075356483459473 |
| keywords[9].display_name | Political science |
| language | en |
| locations[0].id | doi:10.4018/978-1-6684-3694-3.ch024 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306463409 |
| locations[0].source.issn | |
| locations[0].source.type | ebook platform |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IGI Global eBooks |
| locations[0].source.host_organization | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_name | IGI Global |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_lineage_names | IGI Global |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Research Anthology on Cross-Disciplinary Designs and Applications of Automation |
| locations[0].landing_page_url | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102950133 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-2395-6622 |
| authorships[0].author.display_name | Zeshan Hyder |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20382870 |
| authorships[0].affiliations[0].raw_affiliation_string | Missouri University of Science and Technology, Rolla, USA |
| authorships[0].institutions[0].id | https://openalex.org/I20382870 |
| authorships[0].institutions[0].ror | https://ror.org/00scwqd12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20382870 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Missouri University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeshan Hyder |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Missouri University of Science and Technology, Rolla, USA |
| authorships[1].author.id | https://openalex.org/A5013335372 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8139-4467 |
| authorships[1].author.display_name | Keng Siau |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20382870 |
| authorships[1].affiliations[0].raw_affiliation_string | Missouri University of Science and Technology, Rolla, USA |
| authorships[1].institutions[0].id | https://openalex.org/I20382870 |
| authorships[1].institutions[0].ror | https://ror.org/00scwqd12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20382870 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Missouri University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keng Siau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Missouri University of Science and Technology, Rolla, USA |
| authorships[2].author.id | https://openalex.org/A5061450492 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5505-7843 |
| authorships[2].author.display_name | Fiona Fui‐Hoon Nah |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20382870 |
| authorships[2].affiliations[0].raw_affiliation_string | Missouri University of Science and Technology, Rolla, USA |
| authorships[2].institutions[0].id | https://openalex.org/I20382870 |
| authorships[2].institutions[0].ror | https://ror.org/00scwqd12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20382870 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Missouri University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Fiona Nah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Missouri University of Science and Technology, Rolla, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining Industry |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13065 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Mining Techniques and Economics |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4308258967, https://openalex.org/W1962711591, https://openalex.org/W2803396544, https://openalex.org/W2602699637, https://openalex.org/W24250002, https://openalex.org/W2495360771, https://openalex.org/W1591794021, https://openalex.org/W1575461229, https://openalex.org/W2580443824 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4018/978-1-6684-3694-3.ch024 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306463409 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | ebook platform |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IGI Global eBooks |
| best_oa_location.source.host_organization | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_name | IGI Global |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_lineage_names | IGI Global |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Research Anthology on Cross-Disciplinary Designs and Applications of Automation |
| best_oa_location.landing_page_url | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| primary_location.id | doi:10.4018/978-1-6684-3694-3.ch024 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306463409 |
| primary_location.source.issn | |
| primary_location.source.type | ebook platform |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IGI Global eBooks |
| primary_location.source.host_organization | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_name | IGI Global |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_lineage_names | IGI Global |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Research Anthology on Cross-Disciplinary Designs and Applications of Automation |
| primary_location.landing_page_url | https://doi.org/10.4018/978-1-6684-3694-3.ch024 |
| publication_date | 2021-10-29 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1528741131, https://openalex.org/W2064879913, https://openalex.org/W2499497140, https://openalex.org/W1547450116, https://openalex.org/W4250539705, https://openalex.org/W2099989932, https://openalex.org/W2729850118, https://openalex.org/W2970526411, https://openalex.org/W2745166565, https://openalex.org/W2076904356, https://openalex.org/W2947134462, https://openalex.org/W1968102316 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 17 |
| abstract_inverted_index.in | 11, 86, 109, 155 |
| abstract_inverted_index.of | 2, 47, 60, 78, 94, 102, 106, 125, 138, 145, 152 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.to | 49 |
| abstract_inverted_index.AI, | 79 |
| abstract_inverted_index.The | 0, 97, 129 |
| abstract_inverted_index.ago | 19 |
| abstract_inverted_index.and | 8, 27, 42, 54, 69, 82, 90, 112, 122, 141 |
| abstract_inverted_index.are | 116, 143 |
| abstract_inverted_index.for | 34, 149 |
| abstract_inverted_index.has | 63 |
| abstract_inverted_index.the | 12, 35, 58, 75, 87, 100, 107, 110, 118, 136, 146 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.also | 131 |
| abstract_inverted_index.cost | 39 |
| abstract_inverted_index.many | 31 |
| abstract_inverted_index.some | 105, 144 |
| abstract_inverted_index.this | 156 |
| abstract_inverted_index.what | 113, 142 |
| abstract_inverted_index.with | 20, 104 |
| abstract_inverted_index.(AI), | 5 |
| abstract_inverted_index.about | 16, 117 |
| abstract_inverted_index.areas | 93 |
| abstract_inverted_index.faced | 64 |
| abstract_inverted_index.steps | 147 |
| abstract_inverted_index.their | 114, 133 |
| abstract_inverted_index.these | 61, 126, 139, 153 |
| abstract_inverted_index.views | 134 |
| abstract_inverted_index.decade | 18 |
| abstract_inverted_index.future | 95, 137 |
| abstract_inverted_index.mining | 13, 36, 88 |
| abstract_inverted_index.needed | 148 |
| abstract_inverted_index.social | 70 |
| abstract_inverted_index.status | 77 |
| abstract_inverted_index.article | 73, 98, 130 |
| abstract_inverted_index.current | 76 |
| abstract_inverted_index.impacts | 124 |
| abstract_inverted_index.machine | 6, 25, 80 |
| abstract_inverted_index.provide | 30 |
| abstract_inverted_index.results | 101 |
| abstract_inverted_index.safety. | 56 |
| abstract_inverted_index.sector. | 157 |
| abstract_inverted_index.started | 15 |
| abstract_inverted_index.through | 38 |
| abstract_inverted_index.trucks. | 22 |
| abstract_inverted_index.workers | 48 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.advanced | 127 |
| abstract_inverted_index.benefits | 33 |
| abstract_inverted_index.economic | 32 |
| abstract_inverted_index.exposure | 46 |
| abstract_inverted_index.improved | 55 |
| abstract_inverted_index.industry | 14, 37, 89, 111 |
| abstract_inverted_index.presents | 99, 132 |
| abstract_inverted_index.reducing | 45 |
| abstract_inverted_index.threats, | 119 |
| abstract_inverted_index.benefits, | 121 |
| abstract_inverted_index.discusses | 74 |
| abstract_inverted_index.economic, | 65 |
| abstract_inverted_index.hazardous | 50 |
| abstract_inverted_index.improving | 43 |
| abstract_inverted_index.learning, | 7, 26, 81 |
| abstract_inverted_index.potential | 92, 123 |
| abstract_inverted_index.Artificial | 23 |
| abstract_inverted_index.artificial | 3 |
| abstract_inverted_index.autonomous | 9, 21, 28, 83 |
| abstract_inverted_index.continuous | 52 |
| abstract_inverted_index.financial, | 66 |
| abstract_inverted_index.highlights | 91 |
| abstract_inverted_index.interviews | 103 |
| abstract_inverted_index.reduction, | 40 |
| abstract_inverted_index.successful | 150 |
| abstract_inverted_index.workforce, | 68 |
| abstract_inverted_index.challenges, | 120 |
| abstract_inverted_index.challenges. | 71 |
| abstract_inverted_index.conditions, | 51 |
| abstract_inverted_index.efficiency, | 41 |
| abstract_inverted_index.perceptions | 115 |
| abstract_inverted_index.production, | 53 |
| abstract_inverted_index.application. | 96 |
| abstract_inverted_index.intelligence | 4 |
| abstract_inverted_index.stakeholders | 108 |
| abstract_inverted_index.technologies | 10, 29, 62, 84, 140, 154 |
| abstract_inverted_index.intelligence, | 24 |
| abstract_inverted_index.productivity, | 44 |
| abstract_inverted_index.technologies. | 128 |
| abstract_inverted_index.implementation | 1, 59, 85, 151 |
| abstract_inverted_index.technological, | 67 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.91365669 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |