Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt Binders Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/app10217764
The complex shear modulus (G*) and phase angle (δ) are fundamental viscoelastic rheological properties used in the estimation of rutting and fatigue pavement distress in asphalt binder. In the tropical regions, rutting and fatigue cracking are major pavement distress affecting the serviceability of road infrastructure. Laboratory testing of the complex shear modulus and phase angle requires expensive and advanced equipment that is not obtainable in major laboratories within the developing countries of the region, giving rise to the need for an accurate predictive model to support quality pavement design. This research aims at developing a predictive model for the estimation of rutting and fatigue susceptive of asphalt binder at intermediate and high pavement temperatures. Asphalt rheological and ageing test was conducted on eight mixes of modified binders used to build the study database containing 1976 and 1668 data points for rutting and fatigue parameters respectively. The database was divided into training and simulation dataset. The Gaussian process regression (GPR) algorithm was used to predict the rutting and fatigue parameters using unaged and aged conditioned inputs. The proposed GPR was compared with the support vector machine (SVM), recurrent neural networks (RNN) and artificial neural network (ANN) models. Results show that the model performed better in the estimation of rutting parameter than the fatigue parameter. Further, unaged input variables show better reliability in the prediction of fatigue parameter.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app10217764
- https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215
- OA Status
- gold
- Cited By
- 36
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3095878732
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3095878732Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app10217764Digital Object Identifier
- Title
-
Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt BindersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-03Full publication date if available
- Authors
-
Ikenna D. Uwanuakwa, Shaban Ismael Albrka Ali, Mohd Rosli Mohd Hasan, Pınar Akpınar, Ashiru Sani, Khairul Anuar ShariffList of authors in order
- Landing page
-
https://doi.org/10.3390/app10217764Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215Direct OA link when available
- Concepts
-
Rut, Asphalt, Fatigue cracking, Artificial neural network, Kriging, Phase angle (astronomy), Computer science, Geotechnical engineering, Environmental science, Engineering, Materials science, Machine learning, Composite material, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 11, 2023: 7, 2022: 7, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3095878732 |
|---|---|
| doi | https://doi.org/10.3390/app10217764 |
| ids.doi | https://doi.org/10.3390/app10217764 |
| ids.mag | 3095878732 |
| ids.openalex | https://openalex.org/W3095878732 |
| fwci | 2.50702642 |
| type | article |
| title | Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt Binders |
| biblio.issue | 21 |
| biblio.volume | 10 |
| biblio.last_page | 7764 |
| biblio.first_page | 7764 |
| topics[0].id | https://openalex.org/T10264 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Asphalt Pavement Performance Evaluation |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T11609 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9681000113487244 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Geophysical Methods and Applications |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C76893819 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9112429022789001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q596937 |
| concepts[0].display_name | Rut |
| concepts[1].id | https://openalex.org/C168056786 |
| concepts[1].level | 2 |
| concepts[1].score | 0.727817177772522 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q202251 |
| concepts[1].display_name | Asphalt |
| concepts[2].id | https://openalex.org/C3020080851 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7113052010536194 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q507234 |
| concepts[2].display_name | Fatigue cracking |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5798811912536621 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C81692654 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48913314938545227 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[4].display_name | Kriging |
| concepts[5].id | https://openalex.org/C170222088 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4237840175628662 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2059855 |
| concepts[5].display_name | Phase angle (astronomy) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.35069018602371216 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C187320778 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3313271999359131 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[7].display_name | Geotechnical engineering |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.328110933303833 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3163519501686096 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.28976938128471375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2578982710838318 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C159985019 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13866007328033447 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[12].display_name | Composite material |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C1276947 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[14].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/rut |
| keywords[0].score | 0.9112429022789001 |
| keywords[0].display_name | Rut |
| keywords[1].id | https://openalex.org/keywords/asphalt |
| keywords[1].score | 0.727817177772522 |
| keywords[1].display_name | Asphalt |
| keywords[2].id | https://openalex.org/keywords/fatigue-cracking |
| keywords[2].score | 0.7113052010536194 |
| keywords[2].display_name | Fatigue cracking |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5798811912536621 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/kriging |
| keywords[4].score | 0.48913314938545227 |
| keywords[4].display_name | Kriging |
| keywords[5].id | https://openalex.org/keywords/phase-angle |
| keywords[5].score | 0.4237840175628662 |
| keywords[5].display_name | Phase angle (astronomy) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.35069018602371216 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[7].score | 0.3313271999359131 |
| keywords[7].display_name | Geotechnical engineering |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.328110933303833 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.3163519501686096 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.28976938128471375 |
| keywords[10].display_name | Materials science |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.2578982710838318 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/composite-material |
| keywords[12].score | 0.13866007328033447 |
| keywords[12].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.3390/app10217764 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app10217764 |
| locations[1].id | pmh:oai:doaj.org/article:88d94ad55dbc4c8481d54135b120a26b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 10, Iss 21, p 7764 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/88d94ad55dbc4c8481d54135b120a26b |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/10/21/7764/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 10; Issue 21; Pages: 7764 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app10217764 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005170525 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5546-0408 |
| authorships[0].author.display_name | Ikenna D. Uwanuakwa |
| authorships[0].countries | CY, MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I69050122 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I139322472 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I69050122 |
| authorships[0].institutions[0].ror | https://ror.org/02x8svs93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I69050122 |
| authorships[0].institutions[0].country_code | CY |
| authorships[0].institutions[0].display_name | Near East University |
| authorships[0].institutions[1].id | https://openalex.org/I139322472 |
| authorships[0].institutions[1].ror | https://ror.org/02rgb2k63 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I139322472 |
| authorships[0].institutions[1].country_code | MY |
| authorships[0].institutions[1].display_name | Universiti Sains Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ikenna D. Uwanuakwa |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey, School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[1].author.id | https://openalex.org/A5000683583 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1938-9127 |
| authorships[1].author.display_name | Shaban Ismael Albrka Ali |
| authorships[1].countries | CY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69050122 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey |
| authorships[1].institutions[0].id | https://openalex.org/I69050122 |
| authorships[1].institutions[0].ror | https://ror.org/02x8svs93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69050122 |
| authorships[1].institutions[0].country_code | CY |
| authorships[1].institutions[0].display_name | Near East University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaban Ismael Albrka Ali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey |
| authorships[2].author.id | https://openalex.org/A5048483921 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6922-4158 |
| authorships[2].author.display_name | Mohd Rosli Mohd Hasan |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I139322472 |
| authorships[2].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohd Rosli Mohd Hasan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[3].author.id | https://openalex.org/A5055421503 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6885-8105 |
| authorships[3].author.display_name | Pınar Akpınar |
| authorships[3].countries | CY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I69050122 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey |
| authorships[3].institutions[0].id | https://openalex.org/I69050122 |
| authorships[3].institutions[0].ror | https://ror.org/02x8svs93 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I69050122 |
| authorships[3].institutions[0].country_code | CY |
| authorships[3].institutions[0].display_name | Near East University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pinar Akpinar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering, Near East University, 99138 Nicosia, Mersin-10, Turkey |
| authorships[4].author.id | https://openalex.org/A5012819673 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4525-072X |
| authorships[4].author.display_name | Ashiru Sani |
| authorships[4].countries | MY, NG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210152770 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Civil Engineering, Kano University of Science and Technology, 3011 Wudil, Kano, Nigeria |
| authorships[4].institutions[0].id | https://openalex.org/I139322472 |
| authorships[4].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[4].institutions[1].id | https://openalex.org/I4210152770 |
| authorships[4].institutions[1].ror | https://ror.org/042rjfn67 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210152770 |
| authorships[4].institutions[1].country_code | NG |
| authorships[4].institutions[1].display_name | Kano State University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ashiru Sani |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Civil Engineering, Kano University of Science and Technology, 3011 Wudil, Kano, Nigeria, School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[5].author.id | https://openalex.org/A5039224384 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3331-2505 |
| authorships[5].author.display_name | Khairul Anuar Shariff |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Material and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I139322472 |
| authorships[5].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Khairul Anuar Shariff |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Material and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-11-09T00:00:00 |
| display_name | Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt Binders |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10264 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Asphalt Pavement Performance Evaluation |
| related_works | https://openalex.org/W3207901993, https://openalex.org/W3026849073, https://openalex.org/W3190066151, https://openalex.org/W2378609698, https://openalex.org/W23618939, https://openalex.org/W3196088517, https://openalex.org/W853136265, https://openalex.org/W2953410182, https://openalex.org/W1982859902, https://openalex.org/W123643471 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app10217764 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app10217764 |
| primary_location.id | doi:10.3390/app10217764 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/10/21/7764/pdf?version=1604885215 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app10217764 |
| publication_date | 2020-11-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2035776728, https://openalex.org/W2073228644, https://openalex.org/W2562736423, https://openalex.org/W2025245120, https://openalex.org/W2914607833, https://openalex.org/W2614160257, https://openalex.org/W2128284613, https://openalex.org/W2917596390, https://openalex.org/W2942487058, https://openalex.org/W1968819489, https://openalex.org/W6720923070, https://openalex.org/W2808420356, https://openalex.org/W2999573242, https://openalex.org/W2886374543, https://openalex.org/W2794284562, https://openalex.org/W2942900320, https://openalex.org/W2176950688, https://openalex.org/W2789367970, https://openalex.org/W2003278736, https://openalex.org/W2053424750, https://openalex.org/W2773702675, https://openalex.org/W2621888941, https://openalex.org/W2026854879, https://openalex.org/W3087753976, https://openalex.org/W2901950602, https://openalex.org/W2569508898, https://openalex.org/W2612210564, https://openalex.org/W2495358219, https://openalex.org/W2553271640, https://openalex.org/W6645790140, https://openalex.org/W2902221781, https://openalex.org/W2968361872, https://openalex.org/W2802948824, https://openalex.org/W2791303143, https://openalex.org/W2812711723, https://openalex.org/W2042439552, https://openalex.org/W3012619807, https://openalex.org/W3001683904, https://openalex.org/W2049387654, https://openalex.org/W2946685025, https://openalex.org/W3013908465, https://openalex.org/W1590063568, https://openalex.org/W100464641, https://openalex.org/W1981647594, https://openalex.org/W2476370985 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 94 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.at | 92, 108 |
| abstract_inverted_index.in | 15, 24, 64, 203, 220 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 18, 42, 47, 71, 100, 105, 124, 206, 223 |
| abstract_inverted_index.on | 121 |
| abstract_inverted_index.to | 76, 84, 128, 162 |
| abstract_inverted_index.GPR | 177 |
| abstract_inverted_index.The | 0, 145, 154, 175 |
| abstract_inverted_index.and | 5, 20, 32, 52, 57, 102, 110, 116, 135, 141, 151, 166, 171, 190 |
| abstract_inverted_index.are | 9, 35 |
| abstract_inverted_index.for | 79, 97, 139 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.the | 16, 28, 40, 48, 68, 72, 77, 98, 130, 164, 181, 199, 204, 210, 221 |
| abstract_inverted_index.was | 119, 147, 160, 178 |
| abstract_inverted_index.(G*) | 4 |
| abstract_inverted_index.(δ) | 8 |
| abstract_inverted_index.1668 | 136 |
| abstract_inverted_index.1976 | 134 |
| abstract_inverted_index.This | 89 |
| abstract_inverted_index.aged | 172 |
| abstract_inverted_index.aims | 91 |
| abstract_inverted_index.data | 137 |
| abstract_inverted_index.high | 111 |
| abstract_inverted_index.into | 149 |
| abstract_inverted_index.need | 78 |
| abstract_inverted_index.rise | 75 |
| abstract_inverted_index.road | 43 |
| abstract_inverted_index.show | 197, 217 |
| abstract_inverted_index.test | 118 |
| abstract_inverted_index.than | 209 |
| abstract_inverted_index.that | 60, 198 |
| abstract_inverted_index.used | 14, 127, 161 |
| abstract_inverted_index.with | 180 |
| abstract_inverted_index.(ANN) | 194 |
| abstract_inverted_index.(GPR) | 158 |
| abstract_inverted_index.(RNN) | 189 |
| abstract_inverted_index.angle | 7, 54 |
| abstract_inverted_index.build | 129 |
| abstract_inverted_index.eight | 122 |
| abstract_inverted_index.input | 215 |
| abstract_inverted_index.major | 36, 65 |
| abstract_inverted_index.mixes | 123 |
| abstract_inverted_index.model | 83, 96, 200 |
| abstract_inverted_index.phase | 6, 53 |
| abstract_inverted_index.shear | 2, 50 |
| abstract_inverted_index.study | 131 |
| abstract_inverted_index.using | 169 |
| abstract_inverted_index.(SVM), | 185 |
| abstract_inverted_index.ageing | 117 |
| abstract_inverted_index.better | 202, 218 |
| abstract_inverted_index.binder | 107 |
| abstract_inverted_index.giving | 74 |
| abstract_inverted_index.neural | 187, 192 |
| abstract_inverted_index.points | 138 |
| abstract_inverted_index.unaged | 170, 214 |
| abstract_inverted_index.vector | 183 |
| abstract_inverted_index.within | 67 |
| abstract_inverted_index.Asphalt | 114 |
| abstract_inverted_index.Results | 196 |
| abstract_inverted_index.asphalt | 25, 106 |
| abstract_inverted_index.binder. | 26 |
| abstract_inverted_index.binders | 126 |
| abstract_inverted_index.complex | 1, 49 |
| abstract_inverted_index.design. | 88 |
| abstract_inverted_index.divided | 148 |
| abstract_inverted_index.fatigue | 21, 33, 103, 142, 167, 211, 224 |
| abstract_inverted_index.inputs. | 174 |
| abstract_inverted_index.machine | 184 |
| abstract_inverted_index.models. | 195 |
| abstract_inverted_index.modulus | 3, 51 |
| abstract_inverted_index.network | 193 |
| abstract_inverted_index.predict | 163 |
| abstract_inverted_index.process | 156 |
| abstract_inverted_index.quality | 86 |
| abstract_inverted_index.region, | 73 |
| abstract_inverted_index.rutting | 19, 31, 101, 140, 165, 207 |
| abstract_inverted_index.support | 85, 182 |
| abstract_inverted_index.testing | 46 |
| abstract_inverted_index.Further, | 213 |
| abstract_inverted_index.Gaussian | 155 |
| abstract_inverted_index.accurate | 81 |
| abstract_inverted_index.advanced | 58 |
| abstract_inverted_index.compared | 179 |
| abstract_inverted_index.cracking | 34 |
| abstract_inverted_index.database | 132, 146 |
| abstract_inverted_index.dataset. | 153 |
| abstract_inverted_index.distress | 23, 38 |
| abstract_inverted_index.modified | 125 |
| abstract_inverted_index.networks | 188 |
| abstract_inverted_index.pavement | 22, 37, 87, 112 |
| abstract_inverted_index.proposed | 176 |
| abstract_inverted_index.regions, | 30 |
| abstract_inverted_index.requires | 55 |
| abstract_inverted_index.research | 90 |
| abstract_inverted_index.training | 150 |
| abstract_inverted_index.tropical | 29 |
| abstract_inverted_index.affecting | 39 |
| abstract_inverted_index.algorithm | 159 |
| abstract_inverted_index.conducted | 120 |
| abstract_inverted_index.countries | 70 |
| abstract_inverted_index.equipment | 59 |
| abstract_inverted_index.expensive | 56 |
| abstract_inverted_index.parameter | 208 |
| abstract_inverted_index.performed | 201 |
| abstract_inverted_index.recurrent | 186 |
| abstract_inverted_index.variables | 216 |
| abstract_inverted_index.Laboratory | 45 |
| abstract_inverted_index.artificial | 191 |
| abstract_inverted_index.containing | 133 |
| abstract_inverted_index.developing | 69, 93 |
| abstract_inverted_index.estimation | 17, 99, 205 |
| abstract_inverted_index.obtainable | 63 |
| abstract_inverted_index.parameter. | 212, 225 |
| abstract_inverted_index.parameters | 143, 168 |
| abstract_inverted_index.prediction | 222 |
| abstract_inverted_index.predictive | 82, 95 |
| abstract_inverted_index.properties | 13 |
| abstract_inverted_index.regression | 157 |
| abstract_inverted_index.simulation | 152 |
| abstract_inverted_index.susceptive | 104 |
| abstract_inverted_index.conditioned | 173 |
| abstract_inverted_index.fundamental | 10 |
| abstract_inverted_index.reliability | 219 |
| abstract_inverted_index.rheological | 12, 115 |
| abstract_inverted_index.intermediate | 109 |
| abstract_inverted_index.laboratories | 66 |
| abstract_inverted_index.viscoelastic | 11 |
| abstract_inverted_index.respectively. | 144 |
| abstract_inverted_index.temperatures. | 113 |
| abstract_inverted_index.serviceability | 41 |
| abstract_inverted_index.infrastructure. | 44 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5005170525 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I139322472, https://openalex.org/I69050122 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.87975272 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |