Artificial Intelligence to Accelerate COVID-19 Identification from Chest X-rays Article Swipe
University of Minnesota M.S. thesis. May 2021. Major: Computer Science. Advisor: Ju Sun. 1 computer file (PDF); vii, 36 pages.
Related Topics
Concepts
Coronavirus disease 2019 (COVID-19)
Receiver operating characteristic
Medicine
Emergency department
Medical record
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Emergency medicine
Radiology
Medical emergency
Internal medicine
Disease
Infectious disease (medical specialty)
Psychiatry
Metadata
- Type
- dissertation
- Language
- en
- Landing Page
- https://hdl.handle.net/11299/223104
- https://hdl.handle.net/11299/223104
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W3200627206
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3200627206Canonical identifier for this work in OpenAlex
- Title
-
Artificial Intelligence to Accelerate COVID-19 Identification from Chest X-raysWork title
- Type
-
dissertationOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-01Full publication date if available
- Authors
-
Dyah AdilaList of authors in order
- Landing page
-
https://hdl.handle.net/11299/223104Publisher landing page
- PDF URL
-
https://hdl.handle.net/11299/223104Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11299/223104Direct OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Receiver operating characteristic, Medicine, Emergency department, Medical record, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Emergency medicine, Radiology, Medical emergency, Internal medicine, Disease, Infectious disease (medical specialty), PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W3200627206 |
|---|---|
| doi | |
| ids.mag | 3200627206 |
| ids.openalex | https://openalex.org/W3200627206 |
| fwci | |
| type | dissertation |
| title | Artificial Intelligence to Accelerate COVID-19 Identification from Chest X-rays |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10202 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9848999977111816 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Lung Cancer Diagnosis and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7476722598075867 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C58471807 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7192969918251038 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[1].display_name | Receiver operating characteristic |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6794410943984985 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C2780724011 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4974396526813507 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1295316 |
| concepts[3].display_name | Emergency department |
| concepts[4].id | https://openalex.org/C195910791 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43825262784957886 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[4].display_name | Medical record |
| concepts[5].id | https://openalex.org/C3007834351 |
| concepts[5].level | 5 |
| concepts[5].score | 0.4126737117767334 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[6].id | https://openalex.org/C194828623 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38327741622924805 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[6].display_name | Emergency medicine |
| concepts[7].id | https://openalex.org/C126838900 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3670356273651123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[7].display_name | Radiology |
| concepts[8].id | https://openalex.org/C545542383 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3670281171798706 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[8].display_name | Medical emergency |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18928930163383484 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C2779134260 |
| concepts[10].level | 2 |
| concepts[10].score | 0.17357543110847473 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[10].display_name | Disease |
| concepts[11].id | https://openalex.org/C524204448 |
| concepts[11].level | 3 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[11].display_name | Infectious disease (medical specialty) |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.7476722598075867 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[1].score | 0.7192969918251038 |
| keywords[1].display_name | Receiver operating characteristic |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6794410943984985 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/emergency-department |
| keywords[3].score | 0.4974396526813507 |
| keywords[3].display_name | Emergency department |
| keywords[4].id | https://openalex.org/keywords/medical-record |
| keywords[4].score | 0.43825262784957886 |
| keywords[4].display_name | Medical record |
| keywords[5].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[5].score | 0.4126737117767334 |
| keywords[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[6].id | https://openalex.org/keywords/emergency-medicine |
| keywords[6].score | 0.38327741622924805 |
| keywords[6].display_name | Emergency medicine |
| keywords[7].id | https://openalex.org/keywords/radiology |
| keywords[7].score | 0.3670356273651123 |
| keywords[7].display_name | Radiology |
| keywords[8].id | https://openalex.org/keywords/medical-emergency |
| keywords[8].score | 0.3670281171798706 |
| keywords[8].display_name | Medical emergency |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.18928930163383484 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/disease |
| keywords[10].score | 0.17357543110847473 |
| keywords[10].display_name | Disease |
| language | en |
| locations[0].id | pmh:oai:conservancy.umn.edu:11299/223104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402521 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | University of Minnesota Digital Conservancy (University of Minnesota) |
| locations[0].source.host_organization | https://openalex.org/I130238516 |
| locations[0].source.host_organization_name | University of Minnesota |
| locations[0].source.host_organization_lineage | https://openalex.org/I130238516 |
| locations[0].license | |
| locations[0].pdf_url | https://hdl.handle.net/11299/223104 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Thesis or Dissertation |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://hdl.handle.net/11299/223104 |
| locations[1].id | mag:3200627206 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://conservancy.umn.edu/handle/11299/223104 |
| authorships[0].author.id | https://openalex.org/A5025584175 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dyah Adila |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dyah Adila |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/11299/223104 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial Intelligence to Accelerate COVID-19 Identification from Chest X-rays |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:conservancy.umn.edu:11299/223104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402521 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | University of Minnesota Digital Conservancy (University of Minnesota) |
| best_oa_location.source.host_organization | https://openalex.org/I130238516 |
| best_oa_location.source.host_organization_name | University of Minnesota |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I130238516 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://hdl.handle.net/11299/223104 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Thesis or Dissertation |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/11299/223104 |
| primary_location.id | pmh:oai:conservancy.umn.edu:11299/223104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402521 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | University of Minnesota Digital Conservancy (University of Minnesota) |
| primary_location.source.host_organization | https://openalex.org/I130238516 |
| primary_location.source.host_organization_name | University of Minnesota |
| primary_location.source.host_organization_lineage | https://openalex.org/I130238516 |
| primary_location.license | |
| primary_location.pdf_url | https://hdl.handle.net/11299/223104 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Thesis or Dissertation |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://hdl.handle.net/11299/223104 |
| publication_date | 2021-05-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 13 |
| abstract_inverted_index.36 | 18 |
| abstract_inverted_index.Ju | 11 |
| abstract_inverted_index.of | 1 |
| abstract_inverted_index.May | 5 |
| abstract_inverted_index.M.S. | 3 |
| abstract_inverted_index.Sun. | 12 |
| abstract_inverted_index.file | 15 |
| abstract_inverted_index.vii, | 17 |
| abstract_inverted_index.2021. | 6 |
| abstract_inverted_index.(PDF); | 16 |
| abstract_inverted_index.Major: | 7 |
| abstract_inverted_index.pages. | 19 |
| abstract_inverted_index.thesis. | 4 |
| abstract_inverted_index.Advisor: | 10 |
| abstract_inverted_index.Computer | 8 |
| abstract_inverted_index.Science. | 9 |
| abstract_inverted_index.computer | 14 |
| abstract_inverted_index.Minnesota | 2 |
| abstract_inverted_index.University | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5025584175 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |