Artificial Intelligence Tool For Churn Prediction Model and Customer Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.46647/ijetms.2025.v09i02.066
The telecommunications sector has experienced remarkable expansion over the past few decades,driven by rising competition, rapid technological advancements, and ever-changing customerexpectations. To remain competitive in this evolving environment, telecom operators must prioritizecustomer retention and the delivery of personalized services. Two of the most pressing challenges inthis context are churn prediction and customer segmentation. Churn prediction involves identifyingsubscribers who are at high risk of discontinuing their service and migrating to a competitor,allowing providers to develop timely retention strategies. Meanwhile, customer segmentationfocuses on categorizing users into distinct groups based on shared traits and behavioral patterns,which enables more precise marketing campaigns, personalized service offerings, and optimizedpricing models. Traditionally, telecom providers depended on conventional statistical approachesfor churn prediction, which were often manual, limited in scalability, and insufficient for real-timedecision-making. The emergence of Artificial Intelligence (AI) and machine learning hasrevolutionized this landscape, equipping telecom companies with advanced tools to enhance churnforecasting and refine customer segmentation. These technologies have empowered companies toleverage large-scale customer data for more accurate predictions and strategic segmentation,enabling proactive engagement with at-risk customers and fostering long-term loyalty.Consequently, this research focuses on the integration of AI-driven solutions for churn predictionand customer segmentation, which has become vital for telecom firms aiming to minimize customerattrition, strengthen competitive advantage, and deliver an exceptional customer experience in anindustry shaped by constant innovation and fierce market rivalry
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.46647/ijetms.2025.v09i02.066
- https://doi.org/10.46647/ijetms.2025.v09i02.066
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409709171
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409709171Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46647/ijetms.2025.v09i02.066Digital Object Identifier
- Title
-
Artificial Intelligence Tool For Churn Prediction Model and Customer SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
A. Chandra Sekhar, J. Vignesh, C. Nabi Harshad, G. Mohammad Shaheed, D. Sreekanth, P Manivannan N L Narasimha Reddy, Aleti VardhanList of authors in order
- Landing page
-
https://doi.org/10.46647/ijetms.2025.v09i02.066Publisher landing page
- PDF URL
-
https://doi.org/10.46647/ijetms.2025.v09i02.066Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.46647/ijetms.2025.v09i02.066Direct OA link when available
- Concepts
-
Computer science, Market segmentation, Artificial intelligence, Segmentation, Machine learning, Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409709171 |
|---|---|
| doi | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| ids.doi | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| ids.openalex | https://openalex.org/W4409709171 |
| fwci | 0.0 |
| type | article |
| title | Artificial Intelligence Tool For Churn Prediction Model and Customer Segmentation |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 532 |
| biblio.first_page | 524 |
| topics[0].id | https://openalex.org/T12384 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Customer churn and segmentation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6315774321556091 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C125308379 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5671536326408386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q363057 |
| concepts[1].display_name | Market segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5279725193977356 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5261294841766357 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36297494173049927 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C144133560 |
| concepts[5].level | 0 |
| concepts[5].score | 0.17846819758415222 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[5].display_name | Business |
| concepts[6].id | https://openalex.org/C162853370 |
| concepts[6].level | 1 |
| concepts[6].score | 0.08049342036247253 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[6].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6315774321556091 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/market-segmentation |
| keywords[1].score | 0.5671536326408386 |
| keywords[1].display_name | Market segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5279725193977356 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.5261294841766357 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.36297494173049927 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/business |
| keywords[5].score | 0.17846819758415222 |
| keywords[5].display_name | Business |
| keywords[6].id | https://openalex.org/keywords/marketing |
| keywords[6].score | 0.08049342036247253 |
| keywords[6].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.46647/ijetms.2025.v09i02.066 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210180963 |
| locations[0].source.issn | 2581-4621 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2581-4621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Engineering Technology and Management Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | international journal of engineering technology and management sciences |
| locations[0].landing_page_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101505996 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8799-835X |
| authorships[0].author.display_name | A. Chandra Sekhar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None A.Chandra Sekhar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108317799 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. Vignesh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None J. Vignesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5117267744 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | C. Nabi Harshad |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None C. Nabi Harshad |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117267745 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | G. Mohammad Shaheed |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None G. Mohammad Shaheed |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113970392 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9936-1006 |
| authorships[4].author.display_name | D. Sreekanth |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None D. Sreekanth |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101331430 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | P Manivannan N L Narasimha Reddy |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | None P. Vishnu Vardhan Reddy |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5054000646 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Aleti Vardhan |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | None A. Neela Vardhan |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Artificial Intelligence Tool For Churn Prediction Model and Customer Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12384 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Customer churn and segmentation |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W2592395359, https://openalex.org/W2535231171, https://openalex.org/W2045342254, https://openalex.org/W1501331687, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.46647/ijetms.2025.v09i02.066 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210180963 |
| best_oa_location.source.issn | 2581-4621 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2581-4621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Engineering Technology and Management Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | international journal of engineering technology and management sciences |
| best_oa_location.landing_page_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| primary_location.id | doi:10.46647/ijetms.2025.v09i02.066 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210180963 |
| primary_location.source.issn | 2581-4621 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2581-4621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Engineering Technology and Management Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | international journal of engineering technology and management sciences |
| primary_location.landing_page_url | https://doi.org/10.46647/ijetms.2025.v09i02.066 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 69 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.an | 205 |
| abstract_inverted_index.at | 59 |
| abstract_inverted_index.by | 12, 212 |
| abstract_inverted_index.in | 24, 119, 209 |
| abstract_inverted_index.of | 36, 40, 62, 127, 181 |
| abstract_inverted_index.on | 80, 87, 108, 178 |
| abstract_inverted_index.to | 68, 72, 143, 197 |
| abstract_inverted_index.The | 0, 125 |
| abstract_inverted_index.Two | 39 |
| abstract_inverted_index.and | 18, 33, 50, 66, 90, 101, 121, 131, 146, 163, 171, 203, 215 |
| abstract_inverted_index.are | 47, 58 |
| abstract_inverted_index.few | 10 |
| abstract_inverted_index.for | 123, 159, 184, 193 |
| abstract_inverted_index.has | 3, 190 |
| abstract_inverted_index.the | 8, 34, 41, 179 |
| abstract_inverted_index.who | 57 |
| abstract_inverted_index.(AI) | 130 |
| abstract_inverted_index.data | 158 |
| abstract_inverted_index.have | 152 |
| abstract_inverted_index.high | 60 |
| abstract_inverted_index.into | 83 |
| abstract_inverted_index.more | 94, 160 |
| abstract_inverted_index.most | 42 |
| abstract_inverted_index.must | 30 |
| abstract_inverted_index.over | 7 |
| abstract_inverted_index.past | 9 |
| abstract_inverted_index.risk | 61 |
| abstract_inverted_index.this | 25, 135, 175 |
| abstract_inverted_index.were | 115 |
| abstract_inverted_index.with | 140, 168 |
| abstract_inverted_index.Churn | 53 |
| abstract_inverted_index.These | 150 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.churn | 48, 112, 185 |
| abstract_inverted_index.firms | 195 |
| abstract_inverted_index.often | 116 |
| abstract_inverted_index.rapid | 15 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.tools | 142 |
| abstract_inverted_index.users | 82 |
| abstract_inverted_index.vital | 192 |
| abstract_inverted_index.which | 114, 189 |
| abstract_inverted_index.aiming | 196 |
| abstract_inverted_index.become | 191 |
| abstract_inverted_index.fierce | 216 |
| abstract_inverted_index.groups | 85 |
| abstract_inverted_index.inthis | 45 |
| abstract_inverted_index.market | 217 |
| abstract_inverted_index.refine | 147 |
| abstract_inverted_index.remain | 22 |
| abstract_inverted_index.rising | 13 |
| abstract_inverted_index.sector | 2 |
| abstract_inverted_index.shaped | 211 |
| abstract_inverted_index.shared | 88 |
| abstract_inverted_index.timely | 74 |
| abstract_inverted_index.traits | 89 |
| abstract_inverted_index.at-risk | 169 |
| abstract_inverted_index.context | 46 |
| abstract_inverted_index.deliver | 204 |
| abstract_inverted_index.develop | 73 |
| abstract_inverted_index.enables | 93 |
| abstract_inverted_index.enhance | 144 |
| abstract_inverted_index.focuses | 177 |
| abstract_inverted_index.limited | 118 |
| abstract_inverted_index.machine | 132 |
| abstract_inverted_index.manual, | 117 |
| abstract_inverted_index.models. | 103 |
| abstract_inverted_index.precise | 95 |
| abstract_inverted_index.rivalry | 218 |
| abstract_inverted_index.service | 65, 99 |
| abstract_inverted_index.telecom | 28, 105, 138, 194 |
| abstract_inverted_index.accurate | 161 |
| abstract_inverted_index.advanced | 141 |
| abstract_inverted_index.constant | 213 |
| abstract_inverted_index.customer | 51, 78, 148, 157, 187, 207 |
| abstract_inverted_index.delivery | 35 |
| abstract_inverted_index.depended | 107 |
| abstract_inverted_index.distinct | 84 |
| abstract_inverted_index.evolving | 26 |
| abstract_inverted_index.involves | 55 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.minimize | 198 |
| abstract_inverted_index.pressing | 43 |
| abstract_inverted_index.research | 176 |
| abstract_inverted_index.AI-driven | 182 |
| abstract_inverted_index.companies | 139, 154 |
| abstract_inverted_index.customers | 170 |
| abstract_inverted_index.emergence | 126 |
| abstract_inverted_index.empowered | 153 |
| abstract_inverted_index.equipping | 137 |
| abstract_inverted_index.expansion | 6 |
| abstract_inverted_index.fostering | 172 |
| abstract_inverted_index.long-term | 173 |
| abstract_inverted_index.marketing | 96 |
| abstract_inverted_index.migrating | 67 |
| abstract_inverted_index.operators | 29 |
| abstract_inverted_index.proactive | 166 |
| abstract_inverted_index.providers | 71, 106 |
| abstract_inverted_index.retention | 32, 75 |
| abstract_inverted_index.services. | 38 |
| abstract_inverted_index.solutions | 183 |
| abstract_inverted_index.strategic | 164 |
| abstract_inverted_index.Artificial | 128 |
| abstract_inverted_index.Meanwhile, | 77 |
| abstract_inverted_index.advantage, | 202 |
| abstract_inverted_index.anindustry | 210 |
| abstract_inverted_index.behavioral | 91 |
| abstract_inverted_index.campaigns, | 97 |
| abstract_inverted_index.challenges | 44 |
| abstract_inverted_index.engagement | 167 |
| abstract_inverted_index.experience | 208 |
| abstract_inverted_index.innovation | 214 |
| abstract_inverted_index.landscape, | 136 |
| abstract_inverted_index.offerings, | 100 |
| abstract_inverted_index.prediction | 49, 54 |
| abstract_inverted_index.remarkable | 5 |
| abstract_inverted_index.strengthen | 200 |
| abstract_inverted_index.toleverage | 155 |
| abstract_inverted_index.competitive | 23, 201 |
| abstract_inverted_index.exceptional | 206 |
| abstract_inverted_index.experienced | 4 |
| abstract_inverted_index.integration | 180 |
| abstract_inverted_index.large-scale | 156 |
| abstract_inverted_index.prediction, | 113 |
| abstract_inverted_index.predictions | 162 |
| abstract_inverted_index.statistical | 110 |
| abstract_inverted_index.strategies. | 76 |
| abstract_inverted_index.Intelligence | 129 |
| abstract_inverted_index.categorizing | 81 |
| abstract_inverted_index.competition, | 14 |
| abstract_inverted_index.conventional | 109 |
| abstract_inverted_index.environment, | 27 |
| abstract_inverted_index.insufficient | 122 |
| abstract_inverted_index.personalized | 37, 98 |
| abstract_inverted_index.scalability, | 120 |
| abstract_inverted_index.technologies | 151 |
| abstract_inverted_index.advancements, | 17 |
| abstract_inverted_index.approachesfor | 111 |
| abstract_inverted_index.discontinuing | 63 |
| abstract_inverted_index.ever-changing | 19 |
| abstract_inverted_index.predictionand | 186 |
| abstract_inverted_index.segmentation, | 188 |
| abstract_inverted_index.segmentation. | 52, 149 |
| abstract_inverted_index.technological | 16 |
| abstract_inverted_index.Traditionally, | 104 |
| abstract_inverted_index.decades,driven | 11 |
| abstract_inverted_index.patterns,which | 92 |
| abstract_inverted_index.churnforecasting | 145 |
| abstract_inverted_index.optimizedpricing | 102 |
| abstract_inverted_index.hasrevolutionized | 134 |
| abstract_inverted_index.customerattrition, | 199 |
| abstract_inverted_index.prioritizecustomer | 31 |
| abstract_inverted_index.telecommunications | 1 |
| abstract_inverted_index.competitor,allowing | 70 |
| abstract_inverted_index.segmentationfocuses | 79 |
| abstract_inverted_index.customerexpectations. | 20 |
| abstract_inverted_index.loyalty.Consequently, | 174 |
| abstract_inverted_index.segmentation,enabling | 165 |
| abstract_inverted_index.identifyingsubscribers | 56 |
| abstract_inverted_index.real-timedecision-making. | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.1674607 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |