ASCL: Accelerating semi‐supervised learning via contrastive learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/cpe.8293
Summary SSL (semi‐supervised learning) is widely used in machine learning, which leverages labeled and unlabeled data to improve model performance. SSL aims to optimize class mutual information, but noisy pseudo‐labels introduce false class information due to the scarcity of labels. Therefore, these algorithms often need significant training time to refine pseudo‐labels for performance improvement iteratively. To tackle this challenge, we propose a novel plug‐and‐play method named Accelerating semi‐supervised learning via contrastive learning (ASCL). This method combines contrastive learning with uncertainty‐based selection for performance improvement and accelerates the convergence of SSL algorithms. Contrastive learning initially emphasizes the mutual information between samples as a means to decrease dependence on pseudo‐labels. Subsequently, it gradually turns to maximizing the mutual information between classes, aligning with the objective of semi‐supervised learning. Uncertainty‐based selection provides a robust mechanism for acquiring pseudo‐labels. The combination of the contrastive learning module and the uncertainty‐based selection module forms a virtuous cycle to improve the performance of the proposed model. Extensive experiments demonstrate that ASCL outperforms state‐of‐the‐art methods in terms of both convergence efficiency and performance. In the experimental scenario where only one label is assigned per class in the CIFAR‐10 dataset, the application of ASCL to Pseudo‐label, UDA (unsupervised data augmentation for consistency training), and Fixmatch benefits substantial improvements in classification accuracy. Specifically, the results demonstrate notable improvements in respect of 16.32%, 6.9%, and 24.43% when compared to the original outcomes. Moreover, the required training time is reduced by almost 50%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/cpe.8293
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293
- OA Status
- bronze
- Cited By
- 1
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403219640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403219640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/cpe.8293Digital Object Identifier
- Title
-
ASCL: Accelerating semi‐supervised learning via contrastive learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-08Full publication date if available
- Authors
-
Haixiong Liu, Zuoyong Li, Jiawei Wu, Kun Zeng, Rong Hu, Wei ZengList of authors in order
- Landing page
-
https://doi.org/10.1002/cpe.8293Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Consistency (knowledge bases), Mutual information, Class (philosophy), Semi-supervised learning, Selection (genetic algorithm), Convergence (economics), Active learning (machine learning), Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403219640 |
|---|---|
| doi | https://doi.org/10.1002/cpe.8293 |
| ids.doi | https://doi.org/10.1002/cpe.8293 |
| ids.openalex | https://openalex.org/W4403219640 |
| fwci | 0.63877855 |
| type | article |
| title | ASCL: Accelerating semi‐supervised learning via contrastive learning |
| awards[0].id | https://openalex.org/G5355606297 |
| awards[0].funder_id | https://openalex.org/F4320321878 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021J011014 |
| awards[0].funder_display_name | Natural Science Foundation of Fujian Province |
| awards[1].id | https://openalex.org/G8297248742 |
| awards[1].funder_id | https://openalex.org/F4320321878 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023J011390 |
| awards[1].funder_display_name | Natural Science Foundation of Fujian Province |
| awards[2].id | https://openalex.org/G5509429167 |
| awards[2].funder_id | https://openalex.org/F4320321878 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2023R1050 |
| awards[2].funder_display_name | Natural Science Foundation of Fujian Province |
| awards[3].id | https://openalex.org/G5675064630 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 62471207 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 28 |
| biblio.volume | 36 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9793999791145325 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321878 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Fujian Province |
| is_xpac | False |
| apc_list.value | 4740 |
| apc_list.currency | USD |
| apc_list.value_usd | 4740 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9149563312530518 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6875412464141846 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.667496383190155 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C2776436953 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6189673542976379 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[3].display_name | Consistency (knowledge bases) |
| concepts[4].id | https://openalex.org/C152139883 |
| concepts[4].level | 2 |
| concepts[4].score | 0.510583221912384 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q252973 |
| concepts[4].display_name | Mutual information |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.506152331829071 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C58973888 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47843578457832336 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[6].display_name | Semi-supervised learning |
| concepts[7].id | https://openalex.org/C81917197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4709186255931854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[7].display_name | Selection (genetic algorithm) |
| concepts[8].id | https://openalex.org/C2777303404 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45096758008003235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[8].display_name | Convergence (economics) |
| concepts[9].id | https://openalex.org/C77967617 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4162072539329529 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[9].display_name | Active learning (machine learning) |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9149563312530518 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6875412464141846 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.667496383190155 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/consistency |
| keywords[3].score | 0.6189673542976379 |
| keywords[3].display_name | Consistency (knowledge bases) |
| keywords[4].id | https://openalex.org/keywords/mutual-information |
| keywords[4].score | 0.510583221912384 |
| keywords[4].display_name | Mutual information |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.506152331829071 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[6].score | 0.47843578457832336 |
| keywords[6].display_name | Semi-supervised learning |
| keywords[7].id | https://openalex.org/keywords/selection |
| keywords[7].score | 0.4709186255931854 |
| keywords[7].display_name | Selection (genetic algorithm) |
| keywords[8].id | https://openalex.org/keywords/convergence |
| keywords[8].score | 0.45096758008003235 |
| keywords[8].display_name | Convergence (economics) |
| keywords[9].id | https://openalex.org/keywords/active-learning |
| keywords[9].score | 0.4162072539329529 |
| keywords[9].display_name | Active learning (machine learning) |
| language | en |
| locations[0].id | doi:10.1002/cpe.8293 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S11065456 |
| locations[0].source.issn | 1532-0626, 1532-0634 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1532-0626 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Concurrency and Computation Practice and Experience |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Concurrency and Computation: Practice and Experience |
| locations[0].landing_page_url | https://doi.org/10.1002/cpe.8293 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060538659 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Haixiong Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[0].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I83791580 |
| authorships[0].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fujian University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haixiong Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[1].author.id | https://openalex.org/A5091320821 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0952-9915 |
| authorships[1].author.display_name | Zuoyong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[1].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Big Data, Minjiang University, Fuzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I354108 |
| authorships[1].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Minjiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zuoyong Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Big Data, Minjiang University, Fuzhou, China |
| authorships[2].author.id | https://openalex.org/A5100768397 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-3578-0797 |
| authorships[2].author.display_name | Jiawei Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I180726961 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[2].institutions[0].id | https://openalex.org/I180726961 |
| authorships[2].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen University |
| authorships[2].institutions[1].id | https://openalex.org/I157773358 |
| authorships[2].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiawei Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[3].author.id | https://openalex.org/A5021459831 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6713-2871 |
| authorships[3].author.display_name | Kun Zeng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[3].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Big Data, Minjiang University, Fuzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I354108 |
| authorships[3].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Minjiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kun Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Big Data, Minjiang University, Fuzhou, China |
| authorships[4].author.id | https://openalex.org/A5005992481 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7605-4713 |
| authorships[4].author.display_name | Rong Hu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[4].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I98834328 |
| authorships[4].affiliations[1].raw_affiliation_string | The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University, Wuyishan, China |
| authorships[4].institutions[0].id | https://openalex.org/I83791580 |
| authorships[4].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fujian University of Technology |
| authorships[4].institutions[1].id | https://openalex.org/I98834328 |
| authorships[4].institutions[1].ror | https://ror.org/059djzq42 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I98834328 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Wuyi University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rong Hu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, China, The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University, Wuyishan, China |
| authorships[5].author.id | https://openalex.org/A5022209006 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8353-8265 |
| authorships[5].author.display_name | Wei Zeng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181361081 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, China |
| authorships[5].institutions[0].id | https://openalex.org/I181361081 |
| authorships[5].institutions[0].ror | https://ror.org/0483s5p06 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I181361081 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Longyan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei Zeng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ASCL: Accelerating semi‐supervised learning via contrastive learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2056314584, https://openalex.org/W1492505081, https://openalex.org/W1986633584, https://openalex.org/W2976807053, https://openalex.org/W184546935, https://openalex.org/W2909115059, https://openalex.org/W2943886396, https://openalex.org/W2949671220, https://openalex.org/W42414577, https://openalex.org/W3206407025 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/cpe.8293 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S11065456 |
| best_oa_location.source.issn | 1532-0626, 1532-0634 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1532-0626 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Concurrency and Computation Practice and Experience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| best_oa_location.landing_page_url | https://doi.org/10.1002/cpe.8293 |
| primary_location.id | doi:10.1002/cpe.8293 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S11065456 |
| primary_location.source.issn | 1532-0626, 1532-0634 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1532-0626 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Concurrency and Computation Practice and Experience |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.8293 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| primary_location.landing_page_url | https://doi.org/10.1002/cpe.8293 |
| publication_date | 2024-10-08 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2943865428, https://openalex.org/W2964159205, https://openalex.org/W4391744194, https://openalex.org/W4385692497, https://openalex.org/W6623329352, https://openalex.org/W2962369866, https://openalex.org/W4391112030, https://openalex.org/W2964317695, https://openalex.org/W4391994048, https://openalex.org/W3216940589, https://openalex.org/W4292828103, https://openalex.org/W3108259217, https://openalex.org/W3128183952, https://openalex.org/W4205974944, https://openalex.org/W1975165783, https://openalex.org/W2079057609, https://openalex.org/W2111316763, https://openalex.org/W3035160371, https://openalex.org/W6678975374, https://openalex.org/W2431080869, https://openalex.org/W3001197829, https://openalex.org/W3205500251, https://openalex.org/W4221162144, https://openalex.org/W3109620645, https://openalex.org/W4311847607, https://openalex.org/W2108501770, https://openalex.org/W2321533354, https://openalex.org/W2963420272, https://openalex.org/W2100031962, https://openalex.org/W2798991696, https://openalex.org/W2979579363, https://openalex.org/W3108655343, https://openalex.org/W3035524453, https://openalex.org/W3035060554, https://openalex.org/W2600383743, https://openalex.org/W6768698167, https://openalex.org/W2806471870, https://openalex.org/W4311777178, https://openalex.org/W2912168444, https://openalex.org/W1984550626, https://openalex.org/W2069402361, https://openalex.org/W6735236233, https://openalex.org/W4292122171, https://openalex.org/W2601450892, https://openalex.org/W3100019193, https://openalex.org/W2952229419, https://openalex.org/W3118608800, https://openalex.org/W2129068307, https://openalex.org/W2978426779, https://openalex.org/W4288938035, https://openalex.org/W2971130081, https://openalex.org/W4285543376 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 61, 101, 129, 148 |
| abstract_inverted_index.In | 175 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.by | 238 |
| abstract_inverted_index.in | 7, 167, 187, 209, 218 |
| abstract_inverted_index.is | 4, 183, 236 |
| abstract_inverted_index.it | 109 |
| abstract_inverted_index.of | 38, 88, 123, 137, 155, 169, 193, 220 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.to | 16, 22, 35, 48, 103, 112, 151, 195, 227 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.SSL | 1, 20, 89 |
| abstract_inverted_index.The | 135 |
| abstract_inverted_index.UDA | 197 |
| abstract_inverted_index.and | 13, 84, 142, 173, 204, 223 |
| abstract_inverted_index.but | 27 |
| abstract_inverted_index.due | 34 |
| abstract_inverted_index.for | 51, 81, 132, 201 |
| abstract_inverted_index.one | 181 |
| abstract_inverted_index.per | 185 |
| abstract_inverted_index.the | 36, 86, 95, 114, 121, 138, 143, 153, 156, 176, 188, 191, 213, 228, 232 |
| abstract_inverted_index.via | 69 |
| abstract_inverted_index.50%. | 240 |
| abstract_inverted_index.ASCL | 163, 194 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.aims | 21 |
| abstract_inverted_index.both | 170 |
| abstract_inverted_index.data | 15, 199 |
| abstract_inverted_index.need | 44 |
| abstract_inverted_index.only | 180 |
| abstract_inverted_index.that | 162 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.time | 47, 235 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.when | 225 |
| abstract_inverted_index.with | 78, 120 |
| abstract_inverted_index.6.9%, | 222 |
| abstract_inverted_index.class | 24, 32, 186 |
| abstract_inverted_index.cycle | 150 |
| abstract_inverted_index.false | 31 |
| abstract_inverted_index.forms | 147 |
| abstract_inverted_index.label | 182 |
| abstract_inverted_index.means | 102 |
| abstract_inverted_index.model | 18 |
| abstract_inverted_index.named | 65 |
| abstract_inverted_index.noisy | 28 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.often | 43 |
| abstract_inverted_index.terms | 168 |
| abstract_inverted_index.these | 41 |
| abstract_inverted_index.turns | 111 |
| abstract_inverted_index.where | 179 |
| abstract_inverted_index.which | 10 |
| abstract_inverted_index.24.43% | 224 |
| abstract_inverted_index.almost | 239 |
| abstract_inverted_index.method | 64, 74 |
| abstract_inverted_index.model. | 158 |
| abstract_inverted_index.module | 141, 146 |
| abstract_inverted_index.mutual | 25, 96, 115 |
| abstract_inverted_index.refine | 49 |
| abstract_inverted_index.robust | 130 |
| abstract_inverted_index.tackle | 56 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.(ASCL). | 72 |
| abstract_inverted_index.16.32%, | 221 |
| abstract_inverted_index.Summary | 0 |
| abstract_inverted_index.between | 98, 117 |
| abstract_inverted_index.improve | 17, 152 |
| abstract_inverted_index.labeled | 12 |
| abstract_inverted_index.labels. | 39 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.methods | 166 |
| abstract_inverted_index.notable | 216 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.reduced | 237 |
| abstract_inverted_index.respect | 219 |
| abstract_inverted_index.results | 214 |
| abstract_inverted_index.samples | 99 |
| abstract_inverted_index.Fixmatch | 205 |
| abstract_inverted_index.aligning | 119 |
| abstract_inverted_index.assigned | 184 |
| abstract_inverted_index.benefits | 206 |
| abstract_inverted_index.classes, | 118 |
| abstract_inverted_index.combines | 75 |
| abstract_inverted_index.compared | 226 |
| abstract_inverted_index.dataset, | 190 |
| abstract_inverted_index.decrease | 104 |
| abstract_inverted_index.learning | 68, 71, 77, 92, 140 |
| abstract_inverted_index.optimize | 23 |
| abstract_inverted_index.original | 229 |
| abstract_inverted_index.proposed | 157 |
| abstract_inverted_index.provides | 128 |
| abstract_inverted_index.required | 233 |
| abstract_inverted_index.scarcity | 37 |
| abstract_inverted_index.scenario | 178 |
| abstract_inverted_index.training | 46, 234 |
| abstract_inverted_index.virtuous | 149 |
| abstract_inverted_index.Extensive | 159 |
| abstract_inverted_index.Moreover, | 231 |
| abstract_inverted_index.accuracy. | 211 |
| abstract_inverted_index.acquiring | 133 |
| abstract_inverted_index.gradually | 110 |
| abstract_inverted_index.initially | 93 |
| abstract_inverted_index.introduce | 30 |
| abstract_inverted_index.learning) | 3 |
| abstract_inverted_index.learning, | 9 |
| abstract_inverted_index.learning. | 125 |
| abstract_inverted_index.leverages | 11 |
| abstract_inverted_index.mechanism | 131 |
| abstract_inverted_index.objective | 122 |
| abstract_inverted_index.outcomes. | 230 |
| abstract_inverted_index.selection | 80, 127, 145 |
| abstract_inverted_index.unlabeled | 14 |
| abstract_inverted_index.CIFAR‐10 | 189 |
| abstract_inverted_index.Therefore, | 40 |
| abstract_inverted_index.algorithms | 42 |
| abstract_inverted_index.challenge, | 58 |
| abstract_inverted_index.dependence | 105 |
| abstract_inverted_index.efficiency | 172 |
| abstract_inverted_index.emphasizes | 94 |
| abstract_inverted_index.maximizing | 113 |
| abstract_inverted_index.training), | 203 |
| abstract_inverted_index.Contrastive | 91 |
| abstract_inverted_index.accelerates | 85 |
| abstract_inverted_index.algorithms. | 90 |
| abstract_inverted_index.application | 192 |
| abstract_inverted_index.combination | 136 |
| abstract_inverted_index.consistency | 202 |
| abstract_inverted_index.contrastive | 70, 76, 139 |
| abstract_inverted_index.convergence | 87, 171 |
| abstract_inverted_index.demonstrate | 161, 215 |
| abstract_inverted_index.experiments | 160 |
| abstract_inverted_index.improvement | 53, 83 |
| abstract_inverted_index.information | 33, 97, 116 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.performance | 52, 82, 154 |
| abstract_inverted_index.significant | 45 |
| abstract_inverted_index.substantial | 207 |
| abstract_inverted_index.Accelerating | 66 |
| abstract_inverted_index.augmentation | 200 |
| abstract_inverted_index.experimental | 177 |
| abstract_inverted_index.improvements | 208, 217 |
| abstract_inverted_index.information, | 26 |
| abstract_inverted_index.iteratively. | 54 |
| abstract_inverted_index.performance. | 19, 174 |
| abstract_inverted_index.(unsupervised | 198 |
| abstract_inverted_index.Specifically, | 212 |
| abstract_inverted_index.Subsequently, | 108 |
| abstract_inverted_index.classification | 210 |
| abstract_inverted_index.Pseudo‐label, | 196 |
| abstract_inverted_index.pseudo‐labels | 29, 50 |
| abstract_inverted_index.pseudo‐labels. | 107, 134 |
| abstract_inverted_index.plug‐and‐play | 63 |
| abstract_inverted_index.semi‐supervised | 67, 124 |
| abstract_inverted_index.(semi‐supervised | 2 |
| abstract_inverted_index.Uncertainty‐based | 126 |
| abstract_inverted_index.uncertainty‐based | 79, 144 |
| abstract_inverted_index.state‐of‐the‐art | 165 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5091320821, https://openalex.org/A5005992481 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I354108, https://openalex.org/I83791580, https://openalex.org/I98834328 |
| citation_normalized_percentile.value | 0.71553856 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |