Aspect Based Feature Extraction in Sentiment Analysis using Bi-GRU-LSTM Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.13052/jmm1550-4646.2048
In Natural Language Processing (NLP), Sentiment Analysis (SA) is a fundamental process which predicts the sentiment expressed in sentences. In contrast to conventional sentiment analysis, Aspect-Based Sentiment Analysis (ABSA) employs a more nuanced approach to assess the sentiment of individual aspects or components within a document or sentence. Its objective is to identify the sentiment polarity, such as positive, neutral, or negative, associated with particular elements disclosed within a sentence. This research introduces a novel sentiment analysis technique that proves to be more efficient in sentiment analysis compared to current methods. The suggested sentiment analysis method undergoes three key phases: 1. Pre-processing 2. Extraction of aspect sentiment and 3. Sentiment analysis classification. The input text data undergoes pre-processing through the implementation of four typical text normalization techniques, which include stemming, stop word elimination, lemmatization, and tokenization. By employing these methods, the provided text data is prepared and fed into the aspect sentiment extraction phase. During the aspect sentiment extraction phase, features are obtained through a series of steps, including enhanced ATE (Aspect Term Extraction), assessment of word length, and determination of cosine similarity. By following these steps, the relevant features are extracted on the basis of aspects and sentiments involved in the text data. Further, a hybrid classification model is proposed to classify sentiments. In this work, two of the Deep Learning (DL) classifiers, Bi-directional Gated Recurrent Unit (Bi-GRU) and Long Short-Term memory (LSTM) are used in proposing a hybrid classification model which classifies the sentiments effectively and provides accurate final predicted results. Moreover, the performance of proposed sentiment analysis technique is analyzed experimentally to show its efficacy over other models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.13052/jmm1550-4646.2048
- OA Status
- diamond
- Cited By
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403046924
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403046924Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13052/jmm1550-4646.2048Digital Object Identifier
- Title
-
Aspect Based Feature Extraction in Sentiment Analysis using Bi-GRU-LSTM ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Shilpi Gupta, Niraj Singhal, Sheela Hundekari, Kamal Upreti, Anjali Gautam, Pradeep Kumar, Rajesh VermaList of authors in order
- Landing page
-
https://doi.org/10.13052/jmm1550-4646.2048Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.13052/jmm1550-4646.2048Direct OA link when available
- Concepts
-
Sentiment analysis, Computer science, Artificial intelligence, Feature extraction, Natural language processing, Feature (linguistics), Pattern recognition (psychology), Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403046924 |
|---|---|
| doi | https://doi.org/10.13052/jmm1550-4646.2048 |
| ids.doi | https://doi.org/10.13052/jmm1550-4646.2048 |
| ids.openalex | https://openalex.org/W4403046924 |
| fwci | 10.22045679 |
| type | article |
| title | Aspect Based Feature Extraction in Sentiment Analysis using Bi-GRU-LSTM Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 960 |
| biblio.first_page | 935 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6881999969482422 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6284999847412109 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T13731 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.5843999981880188 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3322 |
| topics[2].subfield.display_name | Urban Studies |
| topics[2].display_name | Advanced Computing and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6984142065048218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.69352787733078 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6517608165740967 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5107553005218506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4857064187526703 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4600925147533417 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44642284512519836 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09770211577415466 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.6984142065048218 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.69352787733078 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6517608165740967 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.5107553005218506 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.4857064187526703 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4600925147533417 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.44642284512519836 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/linguistics |
| keywords[7].score | 0.09770211577415466 |
| keywords[7].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.13052/jmm1550-4646.2048 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205632 |
| locations[0].source.issn | 1550-4646, 1550-4654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1550-4646 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Mobile Multimedia |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Mobile Multimedia |
| locations[0].landing_page_url | https://doi.org/10.13052/jmm1550-4646.2048 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078100991 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4262-0000 |
| authorships[0].author.display_name | Shilpi Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shilpi Gupta |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008467717 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2614-4788 |
| authorships[1].author.display_name | Niraj Singhal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Niraj Singhal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002977808 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-9669-659X |
| authorships[2].author.display_name | Sheela Hundekari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheela Hundekari |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007945353 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0665-530X |
| authorships[3].author.display_name | Kamal Upreti |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kamal Upreti |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5080664700 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2675-4073 |
| authorships[4].author.display_name | Anjali Gautam |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anjali Gautam |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100759277 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0802-9305 |
| authorships[5].author.display_name | Pradeep Kumar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pradeep Kumar |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101482251 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7016-2361 |
| authorships[6].author.display_name | Rajesh Verma |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Rajesh Verma |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.13052/jmm1550-4646.2048 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Aspect Based Feature Extraction in Sentiment Analysis using Bi-GRU-LSTM Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6881999969482422 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W4386159726, https://openalex.org/W2601157893, https://openalex.org/W2131735617, https://openalex.org/W2373006798, https://openalex.org/W2056912418, https://openalex.org/W2123759770, https://openalex.org/W2033213769, https://openalex.org/W4312376745, https://openalex.org/W2136016640, https://openalex.org/W2082269393 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13052/jmm1550-4646.2048 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205632 |
| best_oa_location.source.issn | 1550-4646, 1550-4654 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1550-4646 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Mobile Multimedia |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Mobile Multimedia |
| best_oa_location.landing_page_url | https://doi.org/10.13052/jmm1550-4646.2048 |
| primary_location.id | doi:10.13052/jmm1550-4646.2048 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205632 |
| primary_location.source.issn | 1550-4646, 1550-4654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1550-4646 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Mobile Multimedia |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Mobile Multimedia |
| primary_location.landing_page_url | https://doi.org/10.13052/jmm1550-4646.2048 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 30, 44, 68, 73, 164, 205, 238 |
| abstract_inverted_index.1. | 100 |
| abstract_inverted_index.2. | 102 |
| abstract_inverted_index.3. | 108 |
| abstract_inverted_index.By | 136, 183 |
| abstract_inverted_index.In | 0, 19, 214 |
| abstract_inverted_index.as | 57 |
| abstract_inverted_index.be | 81 |
| abstract_inverted_index.in | 17, 84, 200, 236 |
| abstract_inverted_index.is | 8, 50, 144, 209, 261 |
| abstract_inverted_index.of | 38, 104, 121, 166, 175, 180, 195, 218, 256 |
| abstract_inverted_index.on | 192 |
| abstract_inverted_index.or | 41, 46, 60 |
| abstract_inverted_index.to | 21, 34, 51, 80, 88, 211, 264 |
| abstract_inverted_index.ATE | 170 |
| abstract_inverted_index.Its | 48 |
| abstract_inverted_index.The | 91, 112 |
| abstract_inverted_index.and | 107, 134, 146, 178, 197, 229, 247 |
| abstract_inverted_index.are | 161, 190, 234 |
| abstract_inverted_index.fed | 147 |
| abstract_inverted_index.its | 266 |
| abstract_inverted_index.key | 98 |
| abstract_inverted_index.the | 14, 36, 53, 119, 140, 149, 155, 187, 193, 201, 219, 244, 254 |
| abstract_inverted_index.two | 217 |
| abstract_inverted_index.(DL) | 222 |
| abstract_inverted_index.(SA) | 7 |
| abstract_inverted_index.Deep | 220 |
| abstract_inverted_index.Long | 230 |
| abstract_inverted_index.Term | 172 |
| abstract_inverted_index.This | 70 |
| abstract_inverted_index.Unit | 227 |
| abstract_inverted_index.data | 115, 143 |
| abstract_inverted_index.four | 122 |
| abstract_inverted_index.into | 148 |
| abstract_inverted_index.more | 31, 82 |
| abstract_inverted_index.over | 268 |
| abstract_inverted_index.show | 265 |
| abstract_inverted_index.stop | 130 |
| abstract_inverted_index.such | 56 |
| abstract_inverted_index.text | 114, 124, 142, 202 |
| abstract_inverted_index.that | 78 |
| abstract_inverted_index.this | 215 |
| abstract_inverted_index.used | 235 |
| abstract_inverted_index.with | 63 |
| abstract_inverted_index.word | 131, 176 |
| abstract_inverted_index.Gated | 225 |
| abstract_inverted_index.basis | 194 |
| abstract_inverted_index.data. | 203 |
| abstract_inverted_index.final | 250 |
| abstract_inverted_index.input | 113 |
| abstract_inverted_index.model | 208, 241 |
| abstract_inverted_index.novel | 74 |
| abstract_inverted_index.other | 269 |
| abstract_inverted_index.these | 138, 185 |
| abstract_inverted_index.three | 97 |
| abstract_inverted_index.which | 12, 127, 242 |
| abstract_inverted_index.work, | 216 |
| abstract_inverted_index.(ABSA) | 28 |
| abstract_inverted_index.(LSTM) | 233 |
| abstract_inverted_index.(NLP), | 4 |
| abstract_inverted_index.During | 154 |
| abstract_inverted_index.aspect | 105, 150, 156 |
| abstract_inverted_index.assess | 35 |
| abstract_inverted_index.cosine | 181 |
| abstract_inverted_index.hybrid | 206, 239 |
| abstract_inverted_index.memory | 232 |
| abstract_inverted_index.method | 95 |
| abstract_inverted_index.phase, | 159 |
| abstract_inverted_index.phase. | 153 |
| abstract_inverted_index.proves | 79 |
| abstract_inverted_index.series | 165 |
| abstract_inverted_index.steps, | 167, 186 |
| abstract_inverted_index.within | 43, 67 |
| abstract_inverted_index.(Aspect | 171 |
| abstract_inverted_index.Natural | 1 |
| abstract_inverted_index.aspects | 40, 196 |
| abstract_inverted_index.current | 89 |
| abstract_inverted_index.employs | 29 |
| abstract_inverted_index.include | 128 |
| abstract_inverted_index.length, | 177 |
| abstract_inverted_index.models. | 270 |
| abstract_inverted_index.nuanced | 32 |
| abstract_inverted_index.phases: | 99 |
| abstract_inverted_index.process | 11 |
| abstract_inverted_index.through | 118, 163 |
| abstract_inverted_index.typical | 123 |
| abstract_inverted_index.(Bi-GRU) | 228 |
| abstract_inverted_index.Analysis | 6, 27 |
| abstract_inverted_index.Further, | 204 |
| abstract_inverted_index.Language | 2 |
| abstract_inverted_index.Learning | 221 |
| abstract_inverted_index.accurate | 249 |
| abstract_inverted_index.analysis | 76, 86, 94, 110, 259 |
| abstract_inverted_index.analyzed | 262 |
| abstract_inverted_index.approach | 33 |
| abstract_inverted_index.classify | 212 |
| abstract_inverted_index.compared | 87 |
| abstract_inverted_index.contrast | 20 |
| abstract_inverted_index.document | 45 |
| abstract_inverted_index.efficacy | 267 |
| abstract_inverted_index.elements | 65 |
| abstract_inverted_index.enhanced | 169 |
| abstract_inverted_index.features | 160, 189 |
| abstract_inverted_index.identify | 52 |
| abstract_inverted_index.involved | 199 |
| abstract_inverted_index.methods, | 139 |
| abstract_inverted_index.methods. | 90 |
| abstract_inverted_index.neutral, | 59 |
| abstract_inverted_index.obtained | 162 |
| abstract_inverted_index.predicts | 13 |
| abstract_inverted_index.prepared | 145 |
| abstract_inverted_index.proposed | 210, 257 |
| abstract_inverted_index.provided | 141 |
| abstract_inverted_index.provides | 248 |
| abstract_inverted_index.relevant | 188 |
| abstract_inverted_index.research | 71 |
| abstract_inverted_index.results. | 252 |
| abstract_inverted_index.Moreover, | 253 |
| abstract_inverted_index.Recurrent | 226 |
| abstract_inverted_index.Sentiment | 5, 26, 109 |
| abstract_inverted_index.analysis, | 24 |
| abstract_inverted_index.disclosed | 66 |
| abstract_inverted_index.efficient | 83 |
| abstract_inverted_index.employing | 137 |
| abstract_inverted_index.expressed | 16 |
| abstract_inverted_index.extracted | 191 |
| abstract_inverted_index.following | 184 |
| abstract_inverted_index.including | 168 |
| abstract_inverted_index.negative, | 61 |
| abstract_inverted_index.objective | 49 |
| abstract_inverted_index.polarity, | 55 |
| abstract_inverted_index.positive, | 58 |
| abstract_inverted_index.predicted | 251 |
| abstract_inverted_index.proposing | 237 |
| abstract_inverted_index.sentence. | 47, 69 |
| abstract_inverted_index.sentiment | 15, 23, 37, 54, 75, 85, 93, 106, 151, 157, 258 |
| abstract_inverted_index.stemming, | 129 |
| abstract_inverted_index.suggested | 92 |
| abstract_inverted_index.technique | 77, 260 |
| abstract_inverted_index.undergoes | 96, 116 |
| abstract_inverted_index.Extraction | 103 |
| abstract_inverted_index.Processing | 3 |
| abstract_inverted_index.Short-Term | 231 |
| abstract_inverted_index.assessment | 174 |
| abstract_inverted_index.associated | 62 |
| abstract_inverted_index.classifies | 243 |
| abstract_inverted_index.components | 42 |
| abstract_inverted_index.extraction | 152, 158 |
| abstract_inverted_index.individual | 39 |
| abstract_inverted_index.introduces | 72 |
| abstract_inverted_index.particular | 64 |
| abstract_inverted_index.sentences. | 18 |
| abstract_inverted_index.sentiments | 198, 245 |
| abstract_inverted_index.effectively | 246 |
| abstract_inverted_index.fundamental | 10 |
| abstract_inverted_index.performance | 255 |
| abstract_inverted_index.sentiments. | 213 |
| abstract_inverted_index.similarity. | 182 |
| abstract_inverted_index.techniques, | 126 |
| abstract_inverted_index.Aspect-Based | 25 |
| abstract_inverted_index.Extraction), | 173 |
| abstract_inverted_index.classifiers, | 223 |
| abstract_inverted_index.conventional | 22 |
| abstract_inverted_index.elimination, | 132 |
| abstract_inverted_index.determination | 179 |
| abstract_inverted_index.normalization | 125 |
| abstract_inverted_index.tokenization. | 135 |
| abstract_inverted_index.Bi-directional | 224 |
| abstract_inverted_index.Pre-processing | 101 |
| abstract_inverted_index.classification | 207, 240 |
| abstract_inverted_index.experimentally | 263 |
| abstract_inverted_index.implementation | 120 |
| abstract_inverted_index.lemmatization, | 133 |
| abstract_inverted_index.pre-processing | 117 |
| abstract_inverted_index.classification. | 111 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.97683557 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |